Do you want to publish a course? Click here

Mobile phone data analytics against the COVID-19 epidemics in Italy: flow diversity and local job markets during the national lockdown

76   0   0.0 ( 0 )
 Added by Luca Pappalardo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Understanding collective mobility patterns is crucial to plan the restart of production and economic activities, which are currently put in stand-by to fight the diffusion of the epidemics. In this report, we use mobile phone data to infer the movements of people between Italian provinces and municipalities, and we analyze the incoming, outcoming and internal mobility flows before and during the national lockdown (March 9th, 2020) and after the closure of non-necessary productive and economic activities (March 23th, 2020). The population flow across provinces and municipalities enable for the modelling of a risk index tailored for the mobility of each municipality or province. Such an index would be a useful indicator to drive counter-measures in reaction to a sudden reactivation of the epidemics. Mobile phone data, even when aggregated to preserve the privacy of individuals, are a useful data source to track the evolution in time of human mobility, hence allowing for monitoring the effectiveness of control measures such as physical distancing. We address the following analytical questions: How does the mobility structure of a territory change? Do incoming and outcoming flows become more predictable during the lockdown, and what are the differences between weekdays and weekends? Can we detect proper local job markets based on human mobility flows, to eventually shape the borders of a local outbreak?



rate research

Read More

In 2020, countries affected by the COVID-19 pandemic implemented various non-pharmaceutical interventions to contrast the spread of the virus and its impact on their healthcare systems and economies. Using Italian data at different geographic scales, we investigate the relationship between human mobility, which subsumes many facets of the populations response to the changing situation, and the spread of COVID-19. Leveraging mobile phone data from February through September 2020, we find a striking relationship between the decrease in mobility flows and the net reproduction number. We find that the time needed to switch off mobility and bring the net reproduction number below the critical threshold of 1 is about one week. Moreover, we observe a strong relationship between the number of days spent above such threshold before the lockdown-induced drop in mobility flows and the total number of infections per 100k inhabitants. Estimating the statistical effect of mobility flows on the net reproduction number over time, we document a 2-week lag positive association, strong in March and April, and weaker but still significant in June. Our study demonstrates the value of big mobility data to monitor the epidemic and inform control interventions during its unfolding.
Evaluating relative changes leads to additional insights which would remain hidden when only evaluating absolute changes. We analyze a dataset describing mobility of mobile phones in Austria before, during COVID-19 lock-down measures until recent. By applying compositional data analysis we show that formerly hidden information becomes available: we see that the elderly population groups increase relative mobility and that the younger groups especially on weekends also do not decrease their mobility as much as the others.
This paper describes how mobile phone data can guide government and public health authorities in determining the best course of action to control the COVID-19 pandemic and in assessing the effectiveness of control measures such as physical distancing. It identifies key gaps and reasons why this kind of data is only scarcely used, although their value in similar epidemics has proven in a number of use cases. It presents ways to overcome these gaps and key recommendations for urgent action, most notably the establishment of mixed expert groups on national and regional level, and the inclusion and support of governments and public authorities early on. It is authored by a group of experienced data scientists, epidemiologists, demographers and representatives of mobile network operators who jointly put their work at the service of the global effort to combat the COVID-19 pandemic.
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic threatens the health of humans and causes great economic losses. Predictive modelling and forecasting the epidemic trends are essential for developing countermeasures to mitigate this pandemic. We develop a network model, where each node represents an individual and the edges represent contacts between individuals where the infection can spread. The individuals are classified based on the number of contacts they have each day (their node degrees) and their infection status. The transmission network model was respectively fitted to the reported data for the COVID-19 epidemic in Wuhan (China), Toronto (Canada), and the Italian Republic using a Markov Chain Monte Carlo (MCMC) optimization algorithm. Our model fits all three regions well with narrow confidence intervals and could be adapted to simulate other megacities or regions. The model projections on the role of containment strategies can help inform public health authorities to plan control measures.
The policies implemented to hinder the COVID-19 outbreak represent one of the largest critical events in history. The understanding of this process is fundamental for crafting and tailoring post-disaster relief. In this work we perform a massive data analysis, through geolocalized data from 13M Facebook users, on how such a stress affected mobility patterns in France, Italy and UK. We find that the general reduction of the overall efficiency in the network of movements is accompanied by geographical fragmentation with a massive reduction of long-range connections. The impact, however, differs among nations according to their initial mobility structure. Indeed, we find that the mobility network after the lockdown is more concentrated in the case of France and UK and more distributed in Italy. Such a process can be approximated through percolation to quantify the substantial impact of the lockdown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا