No Arabic abstract
Here, we provide a reappraisal of potential LLSVPs compositions based on an improved mineralogical model including, for instance, the effects of alumina. We also systematically investigate the effects of six parameters: FeO and Al$_{2}$O$_{3}$ content, proportion of CaSiO$_{3}$ and bridgmanite (so that the proportion of ferropericlase is implicitly investigated), Fe$^{3+}$/$sum$Fe and temperature contrast between far-field mantle and LLSVPs. From the 81 millions cases studied, only 79000 cases explain the seismic observations. Nevertheless, these successful cases involve a large range of parameters with, for instance, FeO content between 12--25~wt% and Al$_{2}$O$_{3}$ content between 3--17~wt%. We then apply a principal component analysis (PCA) to these cases and find two robust results: (i) the proportion of ferropericlase should be low ($<$6vol%); (ii) the formation of Fe$^{3+}$-bearing bridgmanite is much more favored than other iron-bearing phases. Following these results, we identify two end-member compositions, Bm-rich and CaPv-rich, and discuss their characteristics. Finally, we discuss different scenarios for the formation of LLSVPs and propose that investigating the mineral proportion produced by each scenario is the best way to evaluate their relevance. For instance, the solidification of a primitive magma ocean may produce FeO and Al$_{2}$O$_{3}$ content similar to those suggested by our analysis. However, the mineral proportion of such reservoirs is not well-constrained and may contain a larger proportion of ferropericlase than what is allowed by our results.
The heat flux across the core-mantle boundary (QCMB) is the key parameter to understand the Earth/s thermal history and evolution. Mineralogical constraints of the QCMB require deciphering contributions of the lattice and radiative components to the thermal conductivity at high pressure and temperature in lower mantle phases with depth-dependent composition. Here we determine the radiative conductivity (krad) of a realistic lower mantle (pyrolite) in situ using an ultra-bright light probe and fast time-resolved spectroscopic techniques in laser-heated diamond anvil cells. We find that the mantle opacity increases critically upon heating to ~3000 K at 40-135 GPa, resulting in an unexpectedly low radiative conductivity decreasing with depth from ~0.8 W/m/K at 1000 km to ~0.35 W/m/K at the CMB, the latter being ~30 times smaller than the estimated lattice thermal conductivity at such conditions. Thus, radiative heat transport is blocked due to an increased optical absorption in the hot lower mantle resulting in a moderate CMB heat flow of ~8.5 TW, at odds with present estimates based on the mantle and core dynamics. This moderate rate of core cooling implies an inner core age of about 1 Gy and is compatible with both thermally- and compositionally-driven ancient geodynamo.
The exceptional ability of carbon to form sp2 and sp3 bonding states leads to a great structural and chemical diversity of carbon-bearing phases at non-ambient conditions. Here we use laser-heated diamond anvil cells combined with synchrotron x-ray diffraction, Raman spectroscopy, and first-principles calculations to explore phase transitions in CaCO3 at P > 40 GPa. We find that post-aragonite CaCO3 transforms to the previously predicted P21/c-CaCO3 with sp3-hybridized carbon at 105 GPa (~30 GPa higher than the theoretically predicted crossover pressure). The lowest enthalpy transition path to P21/c-CaCO3 includes reoccurring sp2- and sp3-CaCO3 intermediate phases and transition states, as reveled by our variable-cell nudged elastic band simulation. Raman spectra of P21/c-CaCO3 show an intense band at 1025 cm-1, which we assign to the symmetric C-O stretching vibration based on empirical and first principles calculations. This Raman band has a frequency that is ~20 % lower than the symmetric C-O stretching in sp2-CaCO3, due to the C-O bond length increase across the sp2-sp3 transition, and can be used as a fingerprint of tetrahedrally-coordinated carbon in other carbonates.
Moment tensor inversion is conducted to characterize the source properties of the September 3, M6.3, the September 3, M4.6, and the September 23, M3.4 seismic events occurred in 2017 in the nuclear test site of DPRK. To overcome the difficulties in the comparison, the inversion uses the same stations, the same structural model, the same algorithm, and nearly the same filters in the processing of waveforms. It is shown that the M6.3 event is with predominant explosion component, the M4.6 event is with predominant implosion component, while the M3.4 event is with a predominant double couple component (~74%) and a secondary explosion component (~25%). The three seismic events are with a similar centroid depth. The double couple component of the M3.4 event shows a normal fault striking northeastward.
Earth/s lowermost mantle displays complex geological structures that likely result from heterogeneous thermal and electromagnetic interaction with the core. Geophysical models of the core-mantle boundary (CMB) region rely on the thermal and electrical conductivities of appropriate geomaterials which, however, have never been probed at representative pressure and temperature (P-T) conditions. Here we report on the opacity of single crystalline bridgmanite and ferropericlase, which is linked to both their radiative and electrical conductivity, measured in dynamically- and statically-heated diamond anvil cells as well as computed from first-principles at CMB conditions. Our results show that light absorption in the visible spectral range is enhanced upon heating in both minerals but the rate of change in opacity with temperature is a factor of six higher in ferropericlase. As a result, bridgmanite in the lowermost mantle is moderately transparent while ferropericlase is highly opaque. Our measurements suggest a very low (< 1 W/m/K) and largely temperature-independent radiative conductivity in the lowermost mantle, at odds with previous studies. This implies that the radiative mechanism has not contributed significantly to cooling the Earth/s core throughout the geologic time and points to a present-day CMB heat flow of 9-11 TW. Opaque ferropericlase is electrically conducting and mediates strong core-mantle electromagnetic coupling, explaining the intradecadal oscillations in the length of day, low secular geomagnetic variations in Central Pacific, and the preferred paths of geomagnetic pole reversals.
We investigate the pressure torque between the fluid core and the solid mantle arising from magnetohydrodynamic modes in a rapidly rotating planetary core. A two-dimensional reduced model of the core fluid dynamics is developed to account for the non-spherical core-mantle boundary. The simplification of such a quasi-geostrophic model rests on the assumption of invariance of the equatorial components of the fluid velocity along the rotation axis. We use this model to investigate and quantify the axial torques of linear modes, focusing on the torsional Alfven modes (TM) in an ellipsoid. We verify that the periods of these modes do not depend on the rotation frequency. Furthermore, they possess angular momentum resulting in a net pressure torque acting on the mantle. This torque scales linearly with the equatorial ellipticity. We estimate that for the TM calculated here topographic coupling to the mantle is too weak to account for the variations in the Earths length-of-day.