No Arabic abstract
The exceptional ability of carbon to form sp2 and sp3 bonding states leads to a great structural and chemical diversity of carbon-bearing phases at non-ambient conditions. Here we use laser-heated diamond anvil cells combined with synchrotron x-ray diffraction, Raman spectroscopy, and first-principles calculations to explore phase transitions in CaCO3 at P > 40 GPa. We find that post-aragonite CaCO3 transforms to the previously predicted P21/c-CaCO3 with sp3-hybridized carbon at 105 GPa (~30 GPa higher than the theoretically predicted crossover pressure). The lowest enthalpy transition path to P21/c-CaCO3 includes reoccurring sp2- and sp3-CaCO3 intermediate phases and transition states, as reveled by our variable-cell nudged elastic band simulation. Raman spectra of P21/c-CaCO3 show an intense band at 1025 cm-1, which we assign to the symmetric C-O stretching vibration based on empirical and first principles calculations. This Raman band has a frequency that is ~20 % lower than the symmetric C-O stretching in sp2-CaCO3, due to the C-O bond length increase across the sp2-sp3 transition, and can be used as a fingerprint of tetrahedrally-coordinated carbon in other carbonates.
The stability, structure and properties of carbonate minerals at lower mantle conditions has significant impact on our understanding of the global carbon cycle and the composition of the interior of the Earth. In recent years, there has been significant interest in the behavior of carbonates at lower mantle conditions, specifically in their carbon hybridization, which has relevance for the storage of carbon within the deep mantle. Using high-pressure synchrotron X-ray diffraction in a diamond anvil cell coupled with direct laser heating of CaCO$_{3}$ using a CO$_{2}$ laser, we identify a crystalline phase of the material above 40 GPa $-$ corresponding to a lower mantle depth of around 1,000 km $-$ which has first been predicted by textit{ab initio} structure predictions. The observed $sp^{2}$ carbon hybridized species at 40 GPa is monoclinic with $P2_{1}/c$ symmetry and is stable up to 50 GPa, above which it transforms into a structure which cannot be indexed by existing known phases. A combination of textit{ab initio} random structure search (AIRSS) and quasi-harmonic approximation (QHA) calculations are used to re-explore the relative phase stabilities of the rich phase diagram of CaCO$_{3}$. Nudged elastic band (NEB) calculations are used to investigate the reaction mechanisms between relevant crystal phases of CaCO$_{3}$ and we postulate that the mineral is capable of undergoing $sp^{2}$-$sp^{3}$ hybridization change purely in the $P2_{1}/c$ structure $-$ forgoing the accepted post-aragonite $Pmmn$ structure.
The heat flux across the core-mantle boundary (QCMB) is the key parameter to understand the Earth/s thermal history and evolution. Mineralogical constraints of the QCMB require deciphering contributions of the lattice and radiative components to the thermal conductivity at high pressure and temperature in lower mantle phases with depth-dependent composition. Here we determine the radiative conductivity (krad) of a realistic lower mantle (pyrolite) in situ using an ultra-bright light probe and fast time-resolved spectroscopic techniques in laser-heated diamond anvil cells. We find that the mantle opacity increases critically upon heating to ~3000 K at 40-135 GPa, resulting in an unexpectedly low radiative conductivity decreasing with depth from ~0.8 W/m/K at 1000 km to ~0.35 W/m/K at the CMB, the latter being ~30 times smaller than the estimated lattice thermal conductivity at such conditions. Thus, radiative heat transport is blocked due to an increased optical absorption in the hot lower mantle resulting in a moderate CMB heat flow of ~8.5 TW, at odds with present estimates based on the mantle and core dynamics. This moderate rate of core cooling implies an inner core age of about 1 Gy and is compatible with both thermally- and compositionally-driven ancient geodynamo.
Here, we provide a reappraisal of potential LLSVPs compositions based on an improved mineralogical model including, for instance, the effects of alumina. We also systematically investigate the effects of six parameters: FeO and Al$_{2}$O$_{3}$ content, proportion of CaSiO$_{3}$ and bridgmanite (so that the proportion of ferropericlase is implicitly investigated), Fe$^{3+}$/$sum$Fe and temperature contrast between far-field mantle and LLSVPs. From the 81 millions cases studied, only 79000 cases explain the seismic observations. Nevertheless, these successful cases involve a large range of parameters with, for instance, FeO content between 12--25~wt% and Al$_{2}$O$_{3}$ content between 3--17~wt%. We then apply a principal component analysis (PCA) to these cases and find two robust results: (i) the proportion of ferropericlase should be low ($<$6vol%); (ii) the formation of Fe$^{3+}$-bearing bridgmanite is much more favored than other iron-bearing phases. Following these results, we identify two end-member compositions, Bm-rich and CaPv-rich, and discuss their characteristics. Finally, we discuss different scenarios for the formation of LLSVPs and propose that investigating the mineral proportion produced by each scenario is the best way to evaluate their relevance. For instance, the solidification of a primitive magma ocean may produce FeO and Al$_{2}$O$_{3}$ content similar to those suggested by our analysis. However, the mineral proportion of such reservoirs is not well-constrained and may contain a larger proportion of ferropericlase than what is allowed by our results.
Epitaxial BiFeO3/SrRuO3 superlattices have been grown by pulsed laser deposition on a (001) oriented LaAlO3 substrate and probed by X-ray diffraction and Raman spectroscopy. To investigate the structural competition between rhombohedral BiFeO3 and orthorhombic SrRuO3 the total thickness of all SLs was kept constant and the bilayer thickness (period) {Lambda} was varied. The interlayer strain effects are therefore tuned from large strain effects (short {Lambda} period) to quasi-relaxed structure (large {Lambda}). A complementary investigation using X-ray diffraction and phonon dynamics hints to change from a rhombohedral to a tetragonal structure in the superlattices with the increase of the interlayer strain effect.
In this work, we investigate calcium titanate (CaTiO3 - CTO) using X-ray diffraction and Raman spectroscopy up to 60 and 55 GPa respectively. Both experiments show that the orthorhombic Pnma structure remains stable up to the highest pressures measured, in contradiction to ab-initio predictions. A fit of the compression data with a second-order Birch-Murnaghan equation of state yields a bulk modulus K0 of 181.0(6) GPa. The orthorhombic distortion is found to increase slightly with pressure, in agreement with previous experiments at lower pressures and the general rules for the evolution of perovskites under pressure. High-pressure polarized Raman spectra also enable us to clarify the Raman mode assignment of CTO and identify the modes corresponding to rigid rotation of the octahedra, A-cation shifts and Ti-O bond stretching. The Raman signature is then discussed in terms of compression mechanisms.