No Arabic abstract
We investigate the pressure torque between the fluid core and the solid mantle arising from magnetohydrodynamic modes in a rapidly rotating planetary core. A two-dimensional reduced model of the core fluid dynamics is developed to account for the non-spherical core-mantle boundary. The simplification of such a quasi-geostrophic model rests on the assumption of invariance of the equatorial components of the fluid velocity along the rotation axis. We use this model to investigate and quantify the axial torques of linear modes, focusing on the torsional Alfven modes (TM) in an ellipsoid. We verify that the periods of these modes do not depend on the rotation frequency. Furthermore, they possess angular momentum resulting in a net pressure torque acting on the mantle. This torque scales linearly with the equatorial ellipticity. We estimate that for the TM calculated here topographic coupling to the mantle is too weak to account for the variations in the Earths length-of-day.
Stars are self-gravitating fluids in which pressure, buoyancy, rotation and magnetic fields provide the restoring forces for global modes of oscillation. Pressure and buoyancy energetically dominate, while rotation and magnetism are generally assumed to be weak perturbations and often ignored. However, observations of anomalously weak dipole mode amplitudes in red giant stars suggest that a substantial fraction of these are subject to an additional source of damping localised to their core region, with indirect evidence pointing to the role of a deeply buried magnetic field. It is also known that in many instances the gravity-mode character of affected modes is preserved, but so far no effective damping mechanism has been proposed that accommodates this aspect. Here we present such a mechanism, which damps the oscillations of stars harbouring magnetised cores via resonant interactions with standing Alfven modes of high harmonic index. The damping rates produced by this mechanism are quantitatively on par with those associated with turbulent convection, and in the range required to explain observations, for realistic stellar models and magnetic field strengths. Our results suggest that magnetic fields can provide an efficient means of damping stellar oscillations without needing to disrupt the internal structure of the modes, and lay the groundwork for an extension of the theory of global stellar oscillations that incorporates these effects.
A theoretical framework is developed for understanding the transient growth and propagation characteristics of thermodynamically coupled, meridional mode-like structures in the tropics. The model consists of a Gill-Matsuno type steady atmosphere under the longwave approximation coupled via a wind-evaporation-sea surface temperature (WES) feedback to a slab ocean model. When projected onto basis functions for the atmosphere the system simplifies to a non-normal set of equations that describes the evolution of individual sea surface temperature (SST) modes, with clean separation between symmetric and anti-symmetric modes. The following major findings result from analysis of the system: (i) a transient growth process exists whereby specific SST modes propagate toward lower order modes at the expense of the higher-order modes; (ii) the same dynamical mechanisms govern the evolution of symmetric and anti-symmetric SST modes except for the lowest-order wave number, where for symmetric structures the atmospheric Kelvin wave plays a critically different role in enhancing decay; and (iii) the WES feedback is positive for all modes (with a maximum for the most equatorially confined antisymmetric structure) except for the most equatorially confined symmetric mode where the Kelvin wave generates a negative WES feedback. Taken together, these findings explain why equatorially anti-symmetric dipole-like structures may dominate thermodynamically coupled ocean / atmosphere variability in the tropics. The role of non-normality as well as the role of realistic mean states in meridional mode variability are discussed.
Earth/s lowermost mantle displays complex geological structures that likely result from heterogeneous thermal and electromagnetic interaction with the core. Geophysical models of the core-mantle boundary (CMB) region rely on the thermal and electrical conductivities of appropriate geomaterials which, however, have never been probed at representative pressure and temperature (P-T) conditions. Here we report on the opacity of single crystalline bridgmanite and ferropericlase, which is linked to both their radiative and electrical conductivity, measured in dynamically- and statically-heated diamond anvil cells as well as computed from first-principles at CMB conditions. Our results show that light absorption in the visible spectral range is enhanced upon heating in both minerals but the rate of change in opacity with temperature is a factor of six higher in ferropericlase. As a result, bridgmanite in the lowermost mantle is moderately transparent while ferropericlase is highly opaque. Our measurements suggest a very low (< 1 W/m/K) and largely temperature-independent radiative conductivity in the lowermost mantle, at odds with previous studies. This implies that the radiative mechanism has not contributed significantly to cooling the Earth/s core throughout the geologic time and points to a present-day CMB heat flow of 9-11 TW. Opaque ferropericlase is electrically conducting and mediates strong core-mantle electromagnetic coupling, explaining the intradecadal oscillations in the length of day, low secular geomagnetic variations in Central Pacific, and the preferred paths of geomagnetic pole reversals.
One of the most important aspects in tsunami studies is the wave behavior when it approaches the coast. Information on physical parameters that characterize waves is often limited because of the diffilculties in achieving accurate measurements at the time of the event. The impact of a tsunami on the coast is governed by nonlinear physics such as turbulence with spatial and temporal variability. The use of the Smoothed Particle Hydrodynamic method (SPH) presents advantages over models based on two-dimensional Shallow Waters Equations (SWE), because the assumed vertical velocity simplifies hydrodynamics in two dimensions. The study presented here reports numerical SPH simulations of the tsunami event occurred in Coquimbo (Chile) on September 16 of 2015. On the basis of the reconstruction of the physical parameters that characterized this event (flow velocities, direction and water elevations), calibrated by a reference rodel, force values on buildings located on the study coast were numerically calculated, and compared with an estimate of the Chilean Structural Design Standard. Finally, discussion and conclusions of the comparison of both methodologies are presented, including an influence analysis of the topographical detail of the model in the estimation of hydrodynamic forces.
Magnetic torque is used to actuate nano-torsional resonators, which are fabricated by focused-ion-beam milling of permalloy coated silicon nitride membranes. Optical interferometry is used to measure the mechanical response of two torsion modes at resonance, which is proportional to the magnetization vector of the nanomagnetic volume. By varying the bias magnetic field, the magnetic behavior can be measured with excellent sensitivity ($approx 10^8 mu_B$) for single magnetic elements.