Do you want to publish a course? Click here

Fine-Grained Expression Manipulation via Structured Latent Space

138   0   0.0 ( 0 )
 Added by Junshu Tang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Fine-grained facial expression manipulation is a challenging problem, as fine-grained expression details are difficult to be captured. Most existing expression manipulation methods resort to discrete expression labels, which mainly edit global expressions and ignore the manipulation of fine details. To tackle this limitation, we propose an end-to-end expression-guided generative adversarial network (EGGAN), which utilizes structured latent codes and continuous expression labels as input to generate images with expected expressions. Specifically, we adopt an adversarial autoencoder to map a source image into a structured latent space. Then, given the source latent code and the target expression label, we employ a conditional GAN to generate a new image with the target expression. Moreover, we introduce a perceptual loss and a multi-scale structural similarity loss to preserve identity and global shape during generation. Extensive experiments show that our method can manipulate fine-grained expressions, and generate continuous intermediate expressions between source and target expressions.



rate research

Read More

135 - Jun Ling , Han Xue , Li Song 2020
Facial expression manipulation aims at editing facial expression with a given condition. Previous methods edit an input image under the guidance of a discrete emotion label or absolute condition (e.g., facial action units) to possess the desired expression. However, these methods either suffer from changing condition-irrelevant regions or are inefficient for fine-grained editing. In this study, we take these two objectives into consideration and propose a novel method. First, we replace continuous absolute condition with relative condition, specifically, relative action units. With relative action units, the generator learns to only transform regions of interest which are specified by non-zero-valued relative AUs. Second, our generator is built on U-Net but strengthened by Multi-Scale Feature Fusion (MSF) mechanism for high-quality expression editing purposes. Extensive experiments on both quantitative and qualitative evaluation demonstrate the improvements of our proposed approach compared to the state-of-the-art expression editing methods. Code is available at url{https://github.com/junleen/Expression-manipulator}.
Facial expression transfer between two unpaired images is a challenging problem, as fine-grained expression is typically tangled with other facial attributes. Most existing methods treat expression transfer as an application of expression manipulation, and use predicted global expression, landmarks or action units (AUs) as a guidance. However, the prediction may be inaccurate, which limits the performance of transferring fine-grained expression. Instead of using an intermediate estimated guidance, we propose to explicitly transfer facial expression by directly mapping two unpaired input images to two synthesized images with swapped expressions. Specifically, considering AUs semantically describe fine-grained expression details, we propose a novel multi-class adversarial training method to disentangle input images into two types of fine-grained representations: AU-related feature and AU-free feature. Then, we can synthesize new images with preserved identities and swapped expressions by combining AU-free features with swapped AU-related features. Moreover, to obtain reliable expression transfer results of the unpaired input, we introduce a swap consistency loss to make the synthesized images and self-reconstructed images indistinguishable. Extensive experiments show that our approach outperforms the state-of-the-art expression manipulation methods for transferring fine-grained expressions while preserving other attributes including identity and pose.
Generative adversarial networks (GANs) can generate high-quality images from sampled latent codes. Recent works attempt to edit an image by manipulating its underlying latent code, but rarely go beyond the basic task of attribute adjustment. We propose the first method that enables manipulation with multidimensional condition such as keypoints and captions. Specifically, we design an algorithm that searches for a new latent code that satisfies the target condition based on the Surrogate Gradient Field (SGF) induced by an auxiliary mapping network. For quantitative comparison, we propose a metric to evaluate the disentanglement of manipulation methods. Thorough experimental analysis on the facial attribute adjustment task shows that our method outperforms state-of-the-art methods in disentanglement. We further apply our method to tasks of various condition modalities to demonstrate that our method can alter complex image properties such as keypoints and captions.
237 - Aojun Zhou , Yukun Ma , Junnan Zhu 2021
Sparsity in Deep Neural Networks (DNNs) has been widely studied to compress and accelerate the models on resource-constrained environments. It can be generally categorized into unstructured fine-grained sparsity that zeroes out multiple individual weights distributed across the neural network, and structured coarse-grained sparsity which prunes blocks of sub-networks of a neural network. Fine-grained sparsity can achieve a high compression ratio but is not hardware friendly and hence receives limited speed gains. On the other hand, coarse-grained sparsity cannot concurrently achieve both apparent acceleration on modern GPUs and decent performance. In this paper, we are the first to study training from scratch an N:M fine-grained structured sparse network, which can maintain the advantages of both unstructured fine-grained sparsity and structured coarse-grained sparsity simultaneously on specifically designed GPUs. Specifically, a 2:4 sparse network could achieve 2x speed-up without performance drop on Nvidia A100 GPUs. Furthermore, we propose a novel and effective ingredient, sparse-refined straight-through estimator (SR-STE), to alleviate the negative influence of the approximated gradients computed by vanilla STE during optimization. We also define a metric, Sparse Architecture Divergence (SAD), to measure the sparse networks topology change during the training process. Finally, We justify SR-STEs advantages with SAD and demonstrate the effectiveness of SR-STE by performing comprehensive experiments on various tasks. Source codes and models are available at https://github.com/NM-sparsity/NM-sparsity.
Motivated by the desire to exploit patterns shared across classes, we present a simple yet effective class-specific memory module for fine-grained feature learning. The memory module stores the prototypical feature representation for each category as a moving average. We hypothesize that the combination of similarities with respect to each category is itself a useful discriminative cue. To detect these similarities, we use attention as a querying mechanism. The attention scores with respect to each class prototype are used as weights to combine prototypes via weighted sum, producing a uniquely tailored response feature representation for a given input. The original and response features are combined to produce an augmented feature for classification. We integrate our class-specific memory module into a standard convolutional neural network, yielding a Categorical Memory Network. Our memory module significantly improves accuracy over baseline CNNs, achieving competitive accuracy with state-of-the-art methods on four benchmarks, including CUB-200-2011, Stanford Cars, FGVC Aircraft, and NABirds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا