Do you want to publish a course? Click here

Fine-grained Classification via Categorical Memory Networks

110   0   0.0 ( 0 )
 Added by Deng Weijian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Motivated by the desire to exploit patterns shared across classes, we present a simple yet effective class-specific memory module for fine-grained feature learning. The memory module stores the prototypical feature representation for each category as a moving average. We hypothesize that the combination of similarities with respect to each category is itself a useful discriminative cue. To detect these similarities, we use attention as a querying mechanism. The attention scores with respect to each class prototype are used as weights to combine prototypes via weighted sum, producing a uniquely tailored response feature representation for a given input. The original and response features are combined to produce an augmented feature for classification. We integrate our class-specific memory module into a standard convolutional neural network, yielding a Categorical Memory Network. Our memory module significantly improves accuracy over baseline CNNs, achieving competitive accuracy with state-of-the-art methods on four benchmarks, including CUB-200-2011, Stanford Cars, FGVC Aircraft, and NABirds.

rate research

Read More

Fine-Grained Visual Classification (FGVC) is an important computer vision problem that involves small diversity within the different classes, and often requires expert annotators to collect data. Utilizing this notion of small visual diversity, we revisit Maximum-Entropy learning in the context of fine-grained classification, and provide a training routine that maximizes the entropy of the output probability distribution for training convolutional neural networks on FGVC tasks. We provide a theoretical as well as empirical justification of our approach, and achieve state-of-the-art performance across a variety of classification tasks in FGVC, that can potentially be extended to any fine-tuning task. Our method is robust to different hyperparameter values, amount of training data and amount of training label noise and can hence be a valuable tool in many similar problems.
Fine-grained visual classification is a challenging task that recognizes the sub-classes belonging to the same meta-class. Large inter-class similarity and intra-class variance is the main challenge of this task. Most exiting methods try to solve this problem by designing complex model structures to explore more minute and discriminative regions. In this paper, we argue that mining multi-regional multi-grained features is precisely the key to this task. Specifically, we introduce a new loss function, termed top-down spatial attention loss (TDSA-Loss), which contains a multi-stage channel constrained module and a top-down spatial attention module. The multi-stage channel constrained module aims to make the feature channels in different stages category-aligned. Meanwhile, the top-down spatial attention module uses the attention map generated by high-level aligned feature channels to make middle-level aligned feature channels to focus on particular regions. Finally, we can obtain multiple discriminative regions on high-level feature channels and obtain multiple more minute regions within these discriminative regions on middle-level feature channels. In summary, we obtain multi-regional multi-grained features. Experimental results over four widely used fine-grained image classification datasets demonstrate the effectiveness of the proposed method. Ablative studies further show the superiority of two modules in the proposed method. Codes are available at: https://github.com/dongliangchang/Top-Down-Spatial-Attention-Loss.
Fine-grained image classification is to recognize hundreds of subcategories in each basic-level category. Existing methods employ discriminative localization to find the key distinctions among subcategories. However, they generally have two limitations: (1) Discriminative localization relies on region proposal methods to hypothesize the locations of discriminative regions, which are time-consuming. (2) The training of discriminative localization depends on object or part annotations, which are heavily labor-consuming. It is highly challenging to address the two key limitations simultaneously, and existing methods only focus on one of them. Therefore, we propose a weakly supervised discriminative localization approach (WSDL) for fast fine-grained image classification to address the two limitations at the same time, and its main advantages are: (1) n-pathway end-to-end discriminative localization network is designed to improve classification speed, which simultaneously localizes multiple different discriminative regions for one image to boost classification accuracy, and shares full-image convolutional features generated by region proposal network to accelerate the process of generating region proposals as well as reduce the computation of convolutional operation. (2) Multi-level attention guided localization learning is proposed to localize discriminative regions with different focuses automatically, without using object and part annotations, avoiding the labor consumption. Different level attentions focus on different characteristics of the image, which are complementary and boost the classification accuracy. Both are jointly employed to simultaneously improve classification speed and eliminate dependence on object and part annotations. Compared with state-of-the-art methods on 2 widely-used fine-grained image classification datasets, our WSDL approach achieves the best performance.
Fine-grained visual classification (FGVC) is much more challenging than traditional classification tasks due to the inherently subtle intra-class object variations. Recent works mainly tackle this problem by focusing on how to locate the most discriminative parts, more complementary parts, and parts of various granularities. However, less effort has been placed to which granularities are the most discriminative and how to fuse information cross multi-granularity. In this work, we propose a novel framework for fine-grained visual classification to tackle these problems. In particular, we propose: (i) a progressive training strategy that effectively fuses features from different granularities, and (ii) a random jigsaw patch generator that encourages the network to learn features at specific granularities. We obtain state-of-the-art performances on several standard FGVC benchmark datasets, where the proposed method consistently outperforms existing methods or delivers competitive results. The code will be available at https://github.com/PRIS-CV/PMG-Progressive-Multi-Granularity-Training.
We propose a novel approach to enhance the discriminability of Convolutional Neural Networks (CNN). The key idea is to build a tree structure that could progressively learn fine-grained features to distinguish a subset of classes, by learning features only among these classes. Such features are expected to be more discriminative, compared to features learned for all the classes. We develop a new algorithm to effectively learn the tree structure from a large number of classes. Experiments on large-scale image classification tasks demonstrate that our method could boost the performance of a given basic CNN model. Our method is quite general, hence it can potentially be used in combination with many other deep learning models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا