Do you want to publish a course? Click here

A micromagnetic study of the switching dynamics of the BiFeO$_3$/CoFe heterojunction

291   0   0.0 ( 0 )
 Added by Yu-Ching Liao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The switching dynamics of a single-domain BiFeO3/CoFe heterojunction is modeled and key parameters such as interface exchange coupling coefficient are extracted from experimental results. The lower limit of the magnetic order response time of CoFe in the BiFeO3/CoFe heterojunction is theoretically quantified to be on to the order of 100 ps. Our results indicate that the switching behavior of CoFe in the BiFeO3/CoFe heterojunction is dominated by the rotation of the Neel vector in BiFeO3 rather than the unidirectional exchange bias at the interface. We also quantify the magnitude of the interface exchange coupling coefficient J_int to be 0.32 pJ/m by comparing our simulation results with the giant magnetoresistance (GMR) curves and the magnetic hysteresis loop in the experiments. To the best of our knowledge, this is the first time that J_int is extracted quantitatively from experiments. Furthermore, we demonstrate that the switching success rate and the thermal stability of the BiFeO3/CoFe heterojunction can be improved by reducing the thickness of CoFe and increasing the length to width aspect ratio of the BiFeO3/CoFe heterojunction. Our theoretical model provides a comprehensive framework to study the magnetoelectric properties and the manipulation of the magnetic order of CoFe in the BiFeO3/CoFe heterojunction.



rate research

Read More

91 - Randy S. Fishman 2017
Many years and great effort have been spent constructing the microscopic model for the room temperature multiferroic BiFeO3 However, earlier models implicitly assumed that the cycloidal wavevector q was confined to one of the three-fold symmetric axis in the hexagonal plane normal to the electric polarization. Because recent measurements indicate that q can be rotated by a magnetic field, it is essential to properly treat the anisotropy that confines q at low fields. We show that the anisotropy energy $-K_3 S^6 sin^6 theta cos 6 phi $ confines the wavevectors q to the three-fold axis $phi =0$ and $+-2 pi/3$ within the hexagonal plane with $theta = pi /2$.
First-principles calculations, in combination with the four-state energy mapping method, are performed to extract the magnetic interaction parameters of multiferroic BiFeO$_3$. Such parameters include the symmetric exchange (SE) couplings and the Dzyaloshinskii-Moriya (DM) interactions up to second nearest neighbors, as well as the single ion anisotropy (SIA). All magnetic parameters are obtained not only for the $R3c$ structural ground state, but also for the $R3m$ and $Rbar{3}c$ phases in order to determine the effects of ferroelectricity and antiferrodistortion distortions, respectively, on these magnetic parameters. In particular, two different second-nearest neighbor couplings are identified and their origins are discussed in details. Moreover, Monte-Carlo (MC) simulations using a magnetic Hamiltonian incorporating these first-principles-derived interaction parameters are further performed. They result (i) not only in the accurate prediction of the spin-canted G-type antiferromagnetic structure and of the known magnetic cycloid propagating along a $<$1$bar{1}$0$>$ direction, as well as their unusual characteristics (such as a weak magnetization and spin-density-waves, respectively); (ii) but also in the finding of another cycloidal state of low-energy and that awaits to be experimentally confirmed. Turning on and off the different magnetic interaction parameters in the MC simulations also reveal the precise role of each of them on magnetism.
258 - H. Bea , M. Bibes , A. Barthelemy 2009
Ferroelectric switching in BiFeO$_3$ multiferroic thin films with intrinsic ``stripe-like and ``bubble-like polydomain configurations was studied by piezoresponse force microscopy. Using the local electric field applied by a scanning probe microscope tip, we observe reversal of both out-of-plane and in-plane components of the polarization, with the final domain state depending on the tip sweeping direction. In ``bubble-like samples, complete control of the polarization is achieved, with in-plane polarization change mediated and stabilized by out-of-plane polarization reversal. In ``stripe-like samples the intrinsic domain structure influences polarization switching and in-plane reversal may occur without out-of-plane change. The observed switching behaviour can be well correlated with the radial and vertical components of the highly inhomogeneous electric field applied by the tip.
Hybrid multiferroics such as BiFeO$_3$ (BFO) and La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) heterostructures are highly interesting functional systems due to their complex electronic and magnetic properties. One of the key parameters influencing the emergent properties is the quality of interfaces, where varying interdiffusion lengths can give rise to different chemistry and distinctive electronic states. Here we report high-resolution depth resolved chemical and electronic investigation of BFO/LSMO superlattice using standing-wave hard X-ray photoemission spectroscopy in the first-order Bragg as well as near-total-reflection geometry. Our results show that the interfaces of BFO on top of LSMO are atomically abrupt, while the LSMO on top of BFO interfaces show an interdiffusion length of around 1.2 unit cells. The two interfaces also exhibit different chemical gradients, with the BFO/LSMO interface being Sr-terminated by a spectroscopically distinctive high binding energy component in Sr 2p core-level spectra, which is spatially contained within 1 unit cell from the interface. From the electronic point of view, unique valence band features were observed for bulk-BFO, bulk-LSMO and their interfaces. Our X-ray optical analysis revealed a unique electronic signature at the BFO/LSMO interface, which we attribute to the coupling between those respective layers. Valence band decomposition based on the Bragg-reflection standing-wave measurement also revealed the band alignment between BFO and LSMO layers. Our work demonstrates that standing-wave hard x-ray photoemission is a reliable non-destructive technique for probing depth-resolved electronic structure of buried layers and interfaces with sub-unit-cell resolution. Equivalent investigations can be successfully applied to a broad class of material such as perovskite complex oxides with emergent interfacial phenomena.
The antivortex is a fundamental magnetization structure which is the topological counterpart of the well-known magnetic vortex. We study here the ultrafast dynamic behavior of an isolated antivortex in a patterned Permalloy thin-film element. Using micromagnetic simulations we predict that the antivortex response to an ultrashort external field pulse is characterized by the production of a new antivortex as well as of a temporary vortex, followed by an annihilation process. These processes are complementary to the recently reported response of a vortex and, like for the vortex, lead to the reversal of the orientation of the antivortex core region. In addition to its fundamental interest, this dynamic magnetization process could be used for the generation and propagation of spin waves for novel logical circuits.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا