Do you want to publish a course? Click here

ProFormer: Towards On-Device LSH Projection Based Transformers

85   0   0.0 ( 0 )
 Added by Chinnadhurai Sankar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

At the heart of text based neural models lay word representations, which are powerful but occupy a lot of memory making it challenging to deploy to devices with memory constraints such as mobile phones, watches and IoT. To surmount these challenges, we introduce ProFormer -- a projection based transformer architecture that is faster and lighter making it suitable to deploy to memory constraint devices and preserve user privacy. We use LSH projection layer to dynamically generate word representations on-the-fly without embedding lookup tables leading to significant memory footprint reduction from O(V.d) to O(T), where V is the vocabulary size, d is the embedding dimension size and T is the dimension of the LSH projection representation. We also propose a local projection attention (LPA) layer, which uses self-attention to transform the input sequence of N LSH word projections into a sequence of N/K representations reducing the computations quadratically by O(K^2). We evaluate ProFormer on multiple text classification tasks and observed improvements over prior state-of-the-art on-device approaches for short text classification and comparable performance for long text classification tasks. In comparison with a 2-layer BERT model, ProFormer reduced the embedding memory footprint from 92.16 MB to 1.3 KB and requires 16 times less computation overhead, which is very impressive making it the fastest and smallest on-device model.

rate research

Read More

We develop a chatbot using Deep Bidirectional Transformer models (BERT) to handle client questions in financial investment customer service. The bot can recognize 381 intents, and decides when to say I dont know and escalates irrelevant/uncertain questions to human operators. Our main novel contribution is the discussion about uncertainty measure for BERT, where three different approaches are systematically compared on real problems. We investigated two uncertainty metrics, information entropy and variance of dropout sampling in BERT, followed by mixed-integer programming to optimize decision thresholds. Another novel contribution is the usage of BERT as a language model in automatic spelling correction. Inputs with accidental spelling errors can significantly decrease intent classification performance. The proposed approach combines probabilities from masked language model and word edit distances to find the best corrections for misspelled words. The chatbot and the entire conversational AI system are developed using open-source tools, and deployed within our companys intranet. The proposed approach can be useful for industries seeking similar in-house solutions in their specific business domains. We share all our code and a sample chatbot built on a public dataset on Github.
109 - Peng Xu , Dhruv Kumar , Wei Yang 2020
It is a common belief that training deep transformers from scratch requires large datasets. Consequently, for small datasets, people usually use shallow and simple additional layers on top of pre-trained models during fine-tuning. This work shows that this does not always need to be the case: with proper initialization and optimization, the benefits of very deep transformers can carry over to challenging tasks with small datasets, including Text-to-SQL semantic parsing and logical reading comprehension. In particular, we successfully train $48$ layers of transformers, comprising $24$ fine-tuned layers from pre-trained RoBERTa and $24$ relation-aware layers trained from scratch. With fewer training steps and no task-specific pre-training, we obtain the state-of-the-art performance on the challenging cross-domain Text-to-SQL parsing benchmark Spider. We achieve this by deriving a novel Data-dependent Transformer Fixed-update initialization scheme (DT-Fixup), inspired by the prior T-Fixup work. Further error analysis shows that increasing depth can help improve generalization on small datasets for hard cases that require reasoning and structural understanding.
We present a new approach to extraction of hypernyms based on projection learning and word embeddings. In contrast to classification-based approaches, projection-based methods require no candidate hyponym-hypernym pairs. While it is natural to use both positive and negative training examples in supervised relation extraction, the impact of negative examples on hypernym prediction was not studied so far. In this paper, we show that explicit negative examples used for regularization of the model significantly improve performance compared to the state-of-the-art approach of Fu et al. (2014) on three datasets from different languages.
Recently, there has been a strong interest in developing natural language applications that live on personal devices such as mobile phones, watches and IoT with the objective to preserve user privacy and have low memory. Advances in Locality-Sensitive Hashing (LSH)-based projection networks have demonstrated state-of-the-art performance in various classification tasks without explicit word (or word-piece) embedding lookup tables by computing on-the-fly text representations. In this paper, we show that the projection based neural classifiers are inherently robust to misspellings and perturbations of the input text. We empirically demonstrate that the LSH projection based classifiers are more robust to common misspellings compared to BiLSTMs (with both word-piece & word-only tokenization) and fine-tuned BERT based methods. When subject to misspelling attacks, LSH projection based classifiers had a small average accuracy drop of 2.94% across multiple classifications tasks, while the fine-tuned BERT model accuracy had a significant drop of 11.44%.
Vector representations of sentences, trained on massive text corpora, are widely used as generic sentence embeddings across a variety of NLP problems. The learned representations are generally assumed to be continuous and real-valued, giving rise to a large memory footprint and slow retrieval speed, which hinders their applicability to low-resource (memory and computation) platforms, such as mobile devices. In this paper, we propose four different strategies to transform continuous and generic sentence embeddings into a binarized form, while preserving their rich semantic information. The introduced methods are evaluated across a wide range of downstream tasks, where the binarized sentence embeddings are demonstrated to degrade performance by only about 2% relative to their continuous counterparts, while reducing the storage requirement by over 98%. Moreover, with the learned binary representations, the semantic relatedness of two sentences can be evaluated by simply calculating their Hamming distance, which is more computational efficient compared with the inner product operation between continuous embeddings. Detailed analysis and case study further validate the effectiveness of proposed methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا