No Arabic abstract
We develop a chatbot using Deep Bidirectional Transformer models (BERT) to handle client questions in financial investment customer service. The bot can recognize 381 intents, and decides when to say I dont know and escalates irrelevant/uncertain questions to human operators. Our main novel contribution is the discussion about uncertainty measure for BERT, where three different approaches are systematically compared on real problems. We investigated two uncertainty metrics, information entropy and variance of dropout sampling in BERT, followed by mixed-integer programming to optimize decision thresholds. Another novel contribution is the usage of BERT as a language model in automatic spelling correction. Inputs with accidental spelling errors can significantly decrease intent classification performance. The proposed approach combines probabilities from masked language model and word edit distances to find the best corrections for misspelled words. The chatbot and the entire conversational AI system are developed using open-source tools, and deployed within our companys intranet. The proposed approach can be useful for industries seeking similar in-house solutions in their specific business domains. We share all our code and a sample chatbot built on a public dataset on Github.
Corporate mergers and acquisitions (M&A) account for billions of dollars of investment globally every year, and offer an interesting and challenging domain for artificial intelligence. However, in these highly sensitive domains, it is crucial to not only have a highly robust and accurate model, but be able to generate useful explanations to garner a users trust in the automated system. Regrettably, the recent research regarding eXplainable AI (XAI) in financial text classification has received little to no attention, and many current methods for generating textual-based explanations result in highly implausible explanations, which damage a users trust in the system. To address these issues, this paper proposes a novel methodology for producing plausible counterfactual explanations, whilst exploring the regularization benefits of adversarial training on language models in the domain of FinTech. Exhaustive quantitative experiments demonstrate that not only does this approach improve the model accuracy when compared to the current state-of-the-art and human performance, but it also generates counterfactual explanations which are significantly more plausible based on human trials.
At the heart of text based neural models lay word representations, which are powerful but occupy a lot of memory making it challenging to deploy to devices with memory constraints such as mobile phones, watches and IoT. To surmount these challenges, we introduce ProFormer -- a projection based transformer architecture that is faster and lighter making it suitable to deploy to memory constraint devices and preserve user privacy. We use LSH projection layer to dynamically generate word representations on-the-fly without embedding lookup tables leading to significant memory footprint reduction from O(V.d) to O(T), where V is the vocabulary size, d is the embedding dimension size and T is the dimension of the LSH projection representation. We also propose a local projection attention (LPA) layer, which uses self-attention to transform the input sequence of N LSH word projections into a sequence of N/K representations reducing the computations quadratically by O(K^2). We evaluate ProFormer on multiple text classification tasks and observed improvements over prior state-of-the-art on-device approaches for short text classification and comparable performance for long text classification tasks. In comparison with a 2-layer BERT model, ProFormer reduced the embedding memory footprint from 92.16 MB to 1.3 KB and requires 16 times less computation overhead, which is very impressive making it the fastest and smallest on-device model.
Pre-training a transformer-based model for the language modeling task in a large dataset and then fine-tuning it for downstream tasks has been found very useful in recent years. One major advantage of such pre-trained language models is that they can effectively absorb the context of each word in a sentence. However, for tasks such as the answer selection task, the pre-trained language models have not been extensively used yet. To investigate their effectiveness in such tasks, in this paper, we adopt the pre-trained Bidirectional Encoder Representations from Transformer (BERT) language model and fine-tune it on two Question Answering (QA) datasets and three Community Question Answering (CQA) datasets for the answer selection task. We find that fine-tuning the BERT model for the answer selection task is very effective and observe a maximum improvement of 13.1% in the QA datasets and 18.7% in the CQA datasets compared to the previous state-of-the-art.
A Chatbot is a popular platform to enable users to interact with a software or website to gather information or execute actions in an automated fashion. In recent years, chatbots are being used for executing financial transactions, however, there are a number of security issues, such as secure authentication, data integrity, system availability and transparency, that must be carefully handled for their wide-scale adoption. Recently, the blockchain technology, with a number of security advantages, has emerged as one of the foundational technologies with the potential to disrupt a number of application domains, particularly in the financial sector. In this paper, we forward the idea of integrating a chatbot with blockchain technology in the view to improve the security issues in financial chatbots. More specifically, we present BONIK, a blockchain empowered chatbot for financial transactions, and discuss its architecture and design choices. Furthermore, we explore the developed Proof-of-Concept (PoC), evaluate its performance, analyse how different security and privacy issues are mitigated using BONIK.
In this paper, we propose Evebot, an innovative, sequence to sequence (Seq2seq) based, fully generative conversational system for the diagnosis of negative emotions and prevention of depression through positively suggestive responses. The system consists of an assembly of deep-learning based models, including Bi-LSTM based model for detecting negative emotions of users and obtaining psychological counselling related corpus for training the chatbot, anti-language sequence to sequence neural network, and maximum mutual information (MMI) model. As adolescents are reluctant to show their negative emotions in physical interaction, traditional methods of emotion analysis and comforting methods may not work. Therefore, this system puts emphasis on using virtual platform to detect signs of depression or anxiety, channel adolescents stress and mood, and thus prevent the emergence of mental illness. We launched the integrated chatbot system onto an online platform for real-world campus applications. Through a one-month user study, we observe better results in the increase in positivity than other public chatbots in the control group.