Do you want to publish a course? Click here

Negative Sampling Improves Hypernymy Extraction Based on Projection Learning

79   0   0.0 ( 0 )
 Added by Alexander Panchenko
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We present a new approach to extraction of hypernyms based on projection learning and word embeddings. In contrast to classification-based approaches, projection-based methods require no candidate hyponym-hypernym pairs. While it is natural to use both positive and negative training examples in supervised relation extraction, the impact of negative examples on hypernym prediction was not studied so far. In this paper, we show that explicit negative examples used for regularization of the model significantly improve performance compared to the state-of-the-art approach of Fu et al. (2014) on three datasets from different languages.



rate research

Read More

In this paper, we show how distributionally-induced semantic classes can be helpful for extracting hypernyms. We present methods for inducing sense-aware semantic classes using distributional semantics and using these induced semantic classes for filtering noisy hypernymy relations. Denoising of hypernyms is performed by labeling each semantic class with its hypernyms. On the one hand, this allows us to filter out wrong extractions using the global structure of distributionally similar senses. On the other hand, we infer missing hypernyms via label propagation to cluster terms. We conduct a large-scale crowdsourcing study showing that processing of automatically extracted hypernyms using our approach improves the quality of the hypernymy extraction in terms of both precision and recall. Furthermore, we show the utility of our method in the domain taxonomy induction task, achieving the state-of-the-art results on a SemEval16 task on taxonomy induction.
148 - Qian Li , Hao Peng , Jianxin Li 2021
Schema-based event extraction is a critical technique to apprehend the essential content of events promptly. With the rapid development of deep learning technology, event extraction technology based on deep learning has become a research hotspot. Numerous methods, datasets, and evaluation metrics have been proposed in the literature, raising the need for a comprehensive and updated survey. This paper fills the gap by reviewing the state-of-the-art approaches, focusing on deep learning-based models. We summarize the task definition, paradigm, and models of schema-based event extraction and then discuss each of these in detail. We introduce benchmark datasets that support tests of predictions and evaluation metrics. A comprehensive comparison between different techniques is also provided in this survey. Finally, we conclude by summarizing future research directions facing the research area.
At the heart of text based neural models lay word representations, which are powerful but occupy a lot of memory making it challenging to deploy to devices with memory constraints such as mobile phones, watches and IoT. To surmount these challenges, we introduce ProFormer -- a projection based transformer architecture that is faster and lighter making it suitable to deploy to memory constraint devices and preserve user privacy. We use LSH projection layer to dynamically generate word representations on-the-fly without embedding lookup tables leading to significant memory footprint reduction from O(V.d) to O(T), where V is the vocabulary size, d is the embedding dimension size and T is the dimension of the LSH projection representation. We also propose a local projection attention (LPA) layer, which uses self-attention to transform the input sequence of N LSH word projections into a sequence of N/K representations reducing the computations quadratically by O(K^2). We evaluate ProFormer on multiple text classification tasks and observed improvements over prior state-of-the-art on-device approaches for short text classification and comparable performance for long text classification tasks. In comparison with a 2-layer BERT model, ProFormer reduced the embedding memory footprint from 92.16 MB to 1.3 KB and requires 16 times less computation overhead, which is very impressive making it the fastest and smallest on-device model.
The automatic detection of hypernymy relationships represents a challenging problem in NLP. The successful application of state-of-the-art supervised approaches using distributed representations has generally been impeded by the limited availability of high quality training data. We have developed two novel data augmentation techniques which generate new training examples from existing ones. First, we combine the linguistic principles of hypernym transitivity and intersective modifier-noun composition to generate additional pairs of vectors, such as small dog - dog or small dog - animal, for which a hypernymy relationship can be assumed. Second, we use generative adversarial networks (GANs) to generate pairs of vectors for which the hypernymy relation can also be assumed. We furthermore present two complementary strategies for extending an existing dataset by leveraging linguistic resources such as WordNet. Using an evaluation across 3 different datasets for hypernymy detection and 2 different vector spaces, we demonstrate that both of the proposed automatic data augmentation and dataset extension strategies substantially improve classifier performance.
91 - Wenpeng Yin , Dan Roth 2018
Existing methods of hypernymy detection mainly rely on statistics over a big corpus, either mining some co-occurring patterns like animals such as cats or embedding words of interest into context-aware vectors. These approaches are therefore limited by the availability of a large enough corpus that can cover all terms of interest and provide sufficient contextual information to represent their meaning. In this work, we propose a new paradigm, HyperDef, for hypernymy detection -- expressing word meaning by encoding word definitions, along with context driven representation. This has two main benefits: (i) Definitional sentences express (sense-specific) corpus-independent meanings of words, hence definition-driven approaches enable strong generalization -- once trained, the model is expected to work well in open-domain testbeds; (ii) Global context from a large corpus and definitions provide complementary information for words. Consequently, our model, HyperDef, once trained on task-agnostic data, gets state-of-the-art results in multiple benchmarks
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا