Do you want to publish a course? Click here

Brillouin Light Scattering of Spin Waves Inaccessible with Free-Space Light

308   0   0.0 ( 0 )
 Added by Sergei Urazhdin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Micro-focus Brillouin light scattering is a powerful technique for the spectroscopic and spatial characterization of elementary excitations in materials. However, the small momentum of light limits the accessible excitations to the center of the Brillouin zone. Here, we utilize a metallic nanoantenna fabricated on the archetypal ferrimagnet yttrium iron garnet to demonstrate the possibility of Brillouin light scattering from large-wavevector, high-frequency spin wave excitations that are inaccessible with free-space light. The antenna facilitates sub-diffraction confinement of electromagnetic field, which enhances the local field intensity and generates momentum components significantly larger than those of free-space light. Our approach provides access to high frequency spin waves important for fast nanomagnetic devices, and can be generalized to other types of excitations and light scattering techniques.



rate research

Read More

A ferromagnetic sphere can support textit{optical vortices} in forms of whispering gallery modes and textit{magnetic quasi-vortices} in forms of magnetostatic modes with non-trivial spin textures. These vortices can be characterized by their orbital angular momenta. We experimentally investigate Brillouin scattering of photons in the whispering gallery modes by magnons in the magnetostatic modes, zeroing in on the exchange of the orbital angular momenta between the optical vortices and the magnetic quasi-vortices. We find that the conservation of the orbital angular momentum results in different nonreciprocal behaviors in the Brillouin light scattering. New avenues for chiral optics and opto-spintronics can be opened up by taking the orbital angular momenta as a new degree of freedom for cavity optomagnonics.
Recent years witnessed much broader use of Brillouin inelastic light scattering spectroscopy for the investigation of phonons and magnons in novel materials, nanostructures, and devices. Driven by developments in instrumentation and the strong need for accurate knowledge of energies of elemental excitations, the Brillouin - Mandelstam spectroscopy is rapidly becoming an essential technique, complementary to the Raman inelastic light scattering spectroscopy. We provide an overview of recent progress in the Brillouin light scattering technique, focusing on the use of this photonic method for the investigation of confined acoustic phonons, phononic metamaterials, magnon propagation and scattering. The Review emphasizes emerging applications of the Brillouin - Mandelstam spectroscopy for phonon engineered structures and spintronic devices and concludes with a perspective for future directions.
146 - A. Osada , A. Gloppe , Y. Nakamura 2017
Magnetostatic modes supported by a ferromagnetic sphere have been known as the Walker modes, each of which possesses an orbital angular momentum as well as a spin angular momentum along a static magnetic field. The Walker modes with non-zero orbital angular momenta exhibit topologically non-trivial spin textures, which we call textit{magnetic quasi-vortices}. Photons in optical whispering gallery modes supported by a dielectric sphere possess orbital and spin angular momenta forming textit{optical vortices}. Within a ferromagnetic, as well as dielectric, sphere, two forms of vortices interact in the process of Brillouin light scattering. We argue that in the scattering there is a selection rule that dictates the exchange of orbital angular momenta between the vortices. The selection rule is shown to be responsible for the experimentally observed nonreciprocal Brillouin light scattering.
We demonstrate the use of the micro-Brillouin light scattering (micro-BLS) technique as a local temperature sensor for magnons in a Permalloy thin film and phonons in the glass substrate. A systematic shift in the frequencies of two thermally excited perpendicular standing spin wave modes as the film is uniformly heated allows us to achieve a temperature resolution better than 2.5 K. We demonstrate that the micro-BLS spectra can be used to measure the local temperatures of phonons and magnons across a thermal gradient. Such local temperature sensors are useful for investigating spin caloritronic and thermal transport phenomena in general.
The spectral distribution of parametrically excited dipole-exchange magnons in an in-plane magnetized epitaxial film of yttrium-iron garnet was studied by means of frequency- and wavevector-resolved Brillouin light scattering spectroscopy. The experiment was performed in a parallel pumping geometry where an exciting microwave magnetic field was parallel to the magnetizing field. It was found that for both dipolar and exchange spectral areas parallel pumping excites the lowest volume magnon modes propagating in the film plane perpendicularly to the magnetization direction. In order to interpret the experimental observations, we used a microscopic Heisenberg model that includes exchange as well as dipole-dipole interactions to calculate the magnon spectrum and construct the eigenstates. As proven in our calculations, the observed magnons are characterized by having the highest possible ellipticity of precession which suggests the lowest threshold of parametric generation. Applying different pumping powers we observe modifications in the magnon spectrum that are described theoretically by a softening of the spin stiffness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا