Do you want to publish a course? Click here

On orbital angular momentum conservation in Brillouin light scattering within a ferromagnetic sphere

147   0   0.0 ( 0 )
 Added by Alto Osada
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetostatic modes supported by a ferromagnetic sphere have been known as the Walker modes, each of which possesses an orbital angular momentum as well as a spin angular momentum along a static magnetic field. The Walker modes with non-zero orbital angular momenta exhibit topologically non-trivial spin textures, which we call textit{magnetic quasi-vortices}. Photons in optical whispering gallery modes supported by a dielectric sphere possess orbital and spin angular momenta forming textit{optical vortices}. Within a ferromagnetic, as well as dielectric, sphere, two forms of vortices interact in the process of Brillouin light scattering. We argue that in the scattering there is a selection rule that dictates the exchange of orbital angular momenta between the vortices. The selection rule is shown to be responsible for the experimentally observed nonreciprocal Brillouin light scattering.

rate research

Read More

We present an optomechanical device designed to allow optical transduction of orbital angular momentum of light. An optically induced twist imparted on the device by light is detected using an integrated cavity optomechanical system based on a nanobeam slot-mode photonic crystal cavity. This device could allow measurement of the orbital angular momentum of light when photons are absorbed by the mechanical element, or detection of the presence of photons when they are scattered into new orbital angular momentum states by a sub-wavelength grating patterned on the device. Such a system allows detection of a $l = 1$ orbital angular momentum field with an average power of $3.9times10^3$ photons modulated at the mechanical resonance frequency of the device and can be extended to higher order orbital angular momentum states.
A ferromagnetic sphere can support textit{optical vortices} in forms of whispering gallery modes and textit{magnetic quasi-vortices} in forms of magnetostatic modes with non-trivial spin textures. These vortices can be characterized by their orbital angular momenta. We experimentally investigate Brillouin scattering of photons in the whispering gallery modes by magnons in the magnetostatic modes, zeroing in on the exchange of the orbital angular momenta between the optical vortices and the magnetic quasi-vortices. We find that the conservation of the orbital angular momentum results in different nonreciprocal behaviors in the Brillouin light scattering. New avenues for chiral optics and opto-spintronics can be opened up by taking the orbital angular momenta as a new degree of freedom for cavity optomagnonics.
We study the manipulation of slow light with an orbital angular momentum propagating in a cloud of cold atoms. Atoms are affected by four copropagating control laser beams in a double tripod configuration of the atomic energy levels involved, allowing to minimize the losses at the vortex core of the control beams. In such a situation the atomic medium is transparent for a pair of copropagating probe fields, leading to the creation of two-component (spinor) slow light. We study the interaction between the probe fields when two control beams carry optical vortices of opposite helicity. As a result, a transfer of the optical vortex takes place from the control to the probe fields without switching off and on the control beams. This feature is missing in a single tripod scheme where the optical vortex can be transferred from the control to the probe field only during either the storage or retrieval of light.
Lights orbital angular momentum (OAM) is an unbounded degree of freedom emerging in helical beams that appears very advantageous technologically. Using a chiral microlaser, i.e. an integrated device that allows generating an emission carrying a net OAM, we demonstrate a regime of bistability involving two modes presenting distinct OAM (L = 0 and L = 2). Furthermore, thanks to an engineered spin-orbit coupling of light in the device, these modes also exhibit distinct polarization patterns, i.e. cirular and azimuthal polarizations. Using a dynamical model of rate euqations, we show that this bistability arises from polarization-dependent saturation of the gain medium. Such a bistable regime appears very promising for implementing ultrafast optical switches based on the OAM of light. As well, it paves the way to the exploration of dynamical processes involving phase and polarization vortices.
The coherent control of electron beams and ultrafast electron wave packets dynamics have attracted significant attention in electron microscopy as well as in atomic physics. In order to unify the conceptual pictures developed in both fields, we demonstrate the generation and manipulation of tailored electron orbital angular momentum (OAM) superposition states either by employing customized holographic diffraction masks in a transmission electron microscope or by atomic multiphoton ionization utilizing pulse-shaper generated carrier-envelope phase stable bichromatic ultrashort laser pulses. Both techniques follow similar physical mechanisms based on Fourier synthesis of quantum mechanical superposition states allowing the preparation of a broad set of electron states with uncommon symmetries. We describe both approaches in a unified picture based on an advanced spatial and spectral double slit and point out important analogies. In addition, we analyze the topological charge and discuss the control mechanisms of the free-electron OAM superposition states. Their generation and manipulation by phase tailoring in transmission electron microscopy and atomic multiphoton ionization is illustrated on a 7-fold rotationally symmetric electron density distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا