We consider special Lambert series as generating functions of divisor sums and determine their complete transseries expansion near rational roots of unity. Our methods also yield new insights into the Laurent expansions and modularity properties of iterated Eisenstein integrals that have recently attracted attention in the context of certain period integrals and string theory scattering amplitudes.
We study generating series of torus integrals that contain all so-called modular graph forms relevant for massless one-loop closed-string amplitudes. By analysing the differential equation of the generating series we construct a solution for its low-energy expansion to all orders in the inverse string tension $alpha$. Our solution is expressed through initial data involving multiple zeta values and certain real-analytic functions of the modular parameter of the torus. These functions are built from real and imaginary parts of holomorphic iterated Eisenstein integrals and should be closely related to Browns recent construction of real-analytic modular forms. We study the properties of our real-analytic objects in detail and give explicit examples to a fixed order in the $alpha$-expansion. In particular, our solution allows for a counting of linearly independent modular graph forms at a given weight, confirming previous partial results and giving predictions for higher, hitherto unexplored weights. It also sheds new light on the topic of uniform transcendentality of the $alpha$-expansion.
We continue the analysis of modular invariant functions, subject to inhomogeneous Laplace eigenvalue equations, that were determined in terms of Poincare series in a companion paper. The source term of the Laplace equation is a product of (derivatives of) two non-holomorphic Eisenstein series whence the modular invariants are assigned depth two. These modular invariant functions can sometimes be expressed in terms of single-valued iterated integrals of holomorphic Eisenstein series as they appear in generating series of modular graph forms. We show that the set of iterated integrals of Eisenstein series has to be extended to include also iterated integrals of holomorphic cusp forms to find expressions for all modular invariant functions of depth two. The coefficients of these cusp forms are identified as ratios of their L-values inside and outside the critical strip.
We present a new method to evaluate the $alpha$-expansion of genus-one integrals over open-string punctures and unravel the structure of the elliptic multiple zeta values in its coefficients. This is done by obtaining a simple differential equation of Knizhnik-Zamolodchikov-Bernard-type satisfied by generating functions of such integrals, and solving it via Picard iteration. The initial condition involves the generating functions at the cusp $tauto iinfty$ and can be reduced to genus-zero integrals.
Let $Gamma$ be a geometrically finite Fuchsian group and suppose that $chicolonGammatomathrm{GL}(V)$ is a finite-dimensional representation with non-expanding cusp monodromy. We show that the parabolic Eisenstein series for $Gamma$ with twist $chi$ converges on some half-plane. Further, we develop Fourier-type expansions for these Eisenstein series.