No Arabic abstract
We simulate the pump-probe experiments of lasing in molecular nitrogen ions with particular interest on the effects of rotational wave-packet dynamics. Our computations demonstrate that the coherent preparation of rotational wave packets in N$_2^+$ by an intense short non-resonant pulse results in a modulation of the subsequent emission from $B^2Sigma_u^+ rightarrow X^2Sigma_g^+$ transitions induced by a resonant seed pulse. We model the dynamics of such pumping and emission using density matrix theory to describe the N$_2^+$ dynamics and the Maxwell wave equation to model the seed pulse propagation. We show that the gain and absorption of a delayed seed pulse is dependent on the pump-seed delay, that is, the rotational coherences excited by the pump pulse can modulate the gain and absorption of the delayed seed pulse. Further, we demonstrate that the coherent rotational dynamics of the nitrogen ions can cause lasing without electronic inversion.
In standard lasers, light amplification requires population inversion between an upper and a lower state to break the reciprocity between absorption and stimulated emission. However, in a medium prepared in a specific superposition state, quantum interference may fully suppress absorption while leaving stimulated emission intact, opening the possibility of lasing without inversion. Here we show that lasing without inversion arises naturally during propagation of intense femtosecond laser pulses in air. It is triggered by the combination of molecular ionization and molecular alignment, both unavoidable in intense light fields. The effect could enable inversionless amplification of broadband radiation in many molecular gases, opening unusual opportunities for remote sensing.
A near-infrared laser generates gain on transitions between the $text{B}^{text{2}} Sigma_{text{u}}^{text{+}}$ and $text{X}^{text{2}} Sigma_{text{g}}^{text{+}}$ states of the nitrogen molecular cation in part by coupling the $text{X}^{text{2}} Sigma_{text{g}}^{text{+}}$ and $text{A}^{text{2}} Pi_{text{u}}$ states in the V-system. Traditional time resolved pump-probe measurements rely on post-ionization coupling by the pump pulse to initialize dynamics in the $text{A}^{text{2}} Pi_{text{u}}$ state. Here we show that a weak second excitation pulse reduces ambiguity because it acts only on the ion independent of ionization. The additional control pulse can increase gain by moving population to the $text{A}^{text{2}} Pi_{text{u}}$ state, which modifies the lasing emission in two distinct ways. The presence of fast decoherence on $text{X}^{text{2}} Sigma_{text{g}}^{text{+}}$ to $text{A}^{text{2}} Pi_{text{u}}$ transitions may prevent the formation of a coherent rotational wave packet in the ground state in our experiment, but the control pulse can reverse impulsive alignment by the pump pulse to remove rotational wave packets in the $text{B}^{text{2}} Sigma_{text{u}}^{text{+}}$ state.
The regime of strong light-matter coupling is typically associated with weak excitation. With current realizations of cavity-QED systems, strong coupling may persevere even at elevated excitation levels sufficient to cross the threshold to lasing. In the presence of stimulated emission, the vacuum-Rabi doublet in the emission spectrum is modified and the established criterion for strong coupling no longer applies. We provide a generalized criterion for strong coupling and the corresponding emission spectrum, which includes the influence of higher Jaynes-Cummings states. The applicability is demonstrated in a theory-experiment comparison of a few-emitter quantum-dot--micropillar laser as a particular realization of the driven dissipative Jaynes-Cummings model. Furthermore, we address the question if and for which parameters true single-emitter lasing can be achieved, and provide evidence for the coexistence of strong coupling and lasing in our system in the presence of background emitter contributions.
When a monochromatic electromagnetic plane-wave arrives at the flat interface between its transparent host (i.e., the incidence medium) and an amplifying (or gainy) second medium, the incident beam splits into a reflected wave and a transmitted wave. In general, there is a sign ambiguity in connection with the k-vector of the transmitted beam, which requires at the outset that one decide whether the transmitted beam should grow or decay as it recedes from the interface. The question has been posed and addressed most prominently in the context of incidence at large angles from a dielectric medium of high refractive index onto a gain medium of lower refractive index. Here, the relevant sign of the transmitted k-vector determines whether the evanescent-like waves within the gain medium exponentially grow or decay away from the interface. We examine this and related problems in a more general setting, where the incident beam is taken to be a finite-duration wavepacket whose footprint in the interfacial plane has a finite width. Cases of reflection from and transmission through a gainy slab of finite-thickness as well as those associated with a semi-infinite gain medium will be considered. The broadness of the spatio-temporal spectrum of our incident wavepacket demands that we develop a general strategy for deciding the signs of all the k-vectors that enter the gain medium. Such a strategy emerges from a consideration of the causality constraint that is naturally imposed on both the reflected and transmitted wavepackets.
Using a pair of coupled LRC cavities we experimentally demonstrate that instabilities and amplification action can be tamed by a spatially inhomogenous gain. Specifically we observe the counter-intuitive phenomenon of stabilization of the system even when the overall gain provided is increased. This behavior is directly related to lasing death via asymmetric pumping, recently proposed in [M. Liertzer {it et al}., Phys. Rev. Lett. {bf 108}, 173901 (2012)]. The stability analysis of other simple systems reveals the universal nature of the lasing death phenomenon.