No Arabic abstract
We study a model of isothermal steady-state work-to-work converter, where a single quantum two-level system (TLS) driven by time-dependent periodic external fields acts as the working medium and is permanently put in contact with a thermal reservoir at fixed temperature $T$. By combining Short-Iterative Lanczos (SIL) method and analytic approaches, we study the converter performance in the linear response regime and in a wide range of driving frequencies, from weak to strong dissipation. We show that for our ideal quantum machine several parameter ranges exist where a violation of Thermodynamics Uncertainty Relations (TUR) occurs. We find the violation to depend on the driving frequency and on the dissipation strength, and we trace it back to the degree of coherence of the quantum converter. We eventually discuss the influence of other possible sources of violation, such as non-Markovian effects during the converter dynamics.
Theoretical treatments of periodically-driven quantum thermal machines (PD-QTMs) are largely focused on the limit-cycle stage of operation characterized by a periodic state of the system. Yet, this regime is not immediately accessible for experimental verification. Here, we present a general thermodynamic framework that can handle the performance of PD-QTMs both before and during the limit-cycle stage of operation. It is achieved by observing that periodicity may break down at the ensemble average level, even in the limit-cycle phase. With this observation, and using conventional thermodynamic expressions for work and heat, we find that a complete description of the first law of thermodynamics for PD-QTMs requires a new contribution, which vanishes only in the limit-cycle phase under rather weak system-bath couplings. Significantly, this contribution is substantial at strong couplings even at limit cycle, thus largely affecting the behavior of the thermodynamic efficiency. We demonstrate our framework by simulating a quantum Otto engine building upon a driven resonant level model. Our results provide new insights towards a complete description of PD-QTMs, from turn-on to the limit-cycle stage and, particularly, shed light on the development of quantum thermodynamics at strong coupling.
In apparent contradiction to the laws of thermodynamics, Maxwells demon is able to cyclically extract work from a system in contact with a thermal bath exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent both in the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demons memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.
Research on the out-of-equilibrium dynamics of quantum systems has so far produced important statements on the thermodynamics of small systems undergoing quantum mechanical evolutions. Key examples are provided by the Crooks and Jarzynski relations: taking into account fluctuations in non-equilibrium dynamics, such relations connect equilibrium properties of thermodynamical relevance with explicit non-equilibrium features. Although the experimental verification of such fundamental relations in the classical domain has encountered some success, their quantum mechanical version requires the assessment of the statistics of work performed by or onto an evolving quantum system, a step that has so far encountered considerable difficulties in its implementation due to the practical difficulty to perform reliable projective measurements of instantaneous energy states. In this paper, by exploiting a radical change in the characterization of the work distribution at the quantum level, we report the first experimental verification of the quantum Jarzynski identity and the Tasaki-Crooks relation following a quantum process implemented in a Nuclear Magnetic Resonance (NMR) system. Our experimental approach has enabled the full characterisation of the out-of-equilibrium dynamics of a quantum spin in a statistically significant way, thus embodying a key step towards the grounding of quantum-systems thermodynamics.
We study experimentally work fluctuations in a Szilard engine that extracts work from information encoded as the occupancy of an electron level in a semiconductor quantum dot. We show that as the average work extracted per bit of information increases towards the Landauer limit $k_BT ln 2$, the work fluctuations decrease in accordance with the work fluctuation-dissipation relation. We compare the results to a protocol without measurement and feedback and show that when no information is used, the work output and fluctuations vanish simultaneously contrasting the information-to-energy conversion case where increasing amount of work is produced with decreasing fluctuations. Our work highlights the importance of fluctuations in the design of information-to-work conversion processes.
Recent years have seen an enormously revived interest in the study of thermodynamic notions in the quantum regime. This applies both to the study of notions of work extraction in thermal machines in the quantum regime, as well as to questions of equilibration and thermalisation of interacting quantum many-body systems as such. In this work we bring together these two lines of research by studying work extraction in a closed system that undergoes a sequence of quenches and equilibration steps concomitant with free evolutions. In this way, we incorporate an important insight from the study of the dynamics of quantum many body systems: the evolution of closed systems is expected to be well described, for relevant observables and most times, by a suitable equilibrium state. We will consider three kinds of equilibration, namely to (i) the time averaged state, (ii) the Gibbs ensemble and (iii) the generalised Gibbs ensemble (GGE), reflecting further constants of motion in integrable models. For each effective description, we investigate notions of entropy production, the validity of the minimal work principle and properties of optimal work extraction protocols. While we keep the discussion general, much room is dedicated to the discussion of paradigmatic non-interacting fermionic quantum many-body systems, for which we identify significant differences with respect to the role of the minimal work principle. Our work not only has implications for experiments with cold atoms, but also can be viewed as suggesting a mindset for quantum thermodynamics where the role of the external heat baths is instead played by the system itself, with its internal degrees of freedom bringing coarse-grained observables to equilibrium.