No Arabic abstract
We report on optical excitations in the magnetically ordered phases of multiferroic Fe$_{1.86}$Zn$_{0.14}$Mo$_3$O$_8$ in the frequency range from 10-130 cm$^{-1}$ (0.3-3.9 THz). In the collinear easy-axis antiferromagnetic phase below $T_N=50$~K eleven optically active modes have been observed in finite magnetic fields, assuming that the lowest-lying mode is doubly degenerate. The large number of modes reflects either a more complex magnetic structure than in pure Fe$_{2}$Mo$_3$O$_8$ or that spin stretching modes become active in addition to the usual spin precessional modes. Their magnetic field dependence, for fields applied along the easy axis, reflects the irreversible magnetic-field driven phase transition from the antiferromagnetic ground state to a ferrimagnetic state, while the number of modes remains unchanged in the covered frequency region. We determined selection rules for some of the AFM modes by investigating all polarization configurations and identified magnetic- and electric-dipole active modes as well. In addition to these sharp resonances, a broad electric-dipole active excitation band, which is not influenced by the external magnetic field, occurs below $T_N$ with an onset at 12 cm$^{-1}$. We are able to model this absorption band as a vibronic excitation related to the lowest-lying Fe$^{2+}$ electronic states in tetrahedral environment.
We report on the structural and spectroscopic characterization of the multiferroic Fe$_2$Mo$_3$O$_8$. Synchrotron x-ray and neutron diffraction, as well as thermal expansion measurements reveal a lattice anomaly at $T_{mathrm{N}}simeq 60,$K but do not show any symmetry lowering in the magnetically ordered state. The lattice parameter $c$ exhibits a non-monotonic behavior with a pronounced minimum around $200,$K, which is also reflected in an anomalous behavior of some of the observed infrared-active optical excitations and parallels the onset of short-range magnetic order. The infrared reflectivity spectra measured between 5 and 300$,$K in the frequency range of $100-8000,$cm$^{-1}$ reveal most of the expected phonon modes in comparison with the eigenfrequencies obtained by density-functional calculations. The $A_1$ phonons show an overall hardening upon cooling, whereas a non-monotonic behavior is observed for some of the $E_1$ modes. These modes also show a strongly increased phonon lifetime below $T_mathrm{N}$, which we associate with the quenched direction of the orbital moment in the magnetically ordered state. A similar increase is observed in the lifetime of the higher-lying $d$-$d$ excitations of the tetrahedral Fe$^{2+}$ site, which become clearly visible below $T_mathrm{N}$ only.
The control of the stoichiometry of Li$_{1+x}$Zn$_{2-y}$Mo$_3$O$_8$ was achieved by the solid-state-reaction. We found that the best sample that has the chemical composition Li$_{0.95(4)}$Zn$_{1.92(8)}$Mo$_3$O$_8$ was obtained from the starting nominal composition with Li : Zn : Mo : O = $(1+w)$ : $(2.8-w)$ : $3$ : $8.6$ with $w = -0.1$, indicating that the stoichiometry is greatly improved compared to those in the earlier reports. For larger $w$ detailed structural analysis indicates that the mixed sites of Li and Zn are preferentially occupied by Li atoms, as well as the fraction of the non-magnetic secondary phase Zn$_2$Mo$_3$O$_8$ decreases. Magnetic susceptibility of the improved stoichiometry powder samples shows a broad hump in the temperature range of 100 $< T <$ 200 K. This suggests that the development of antiferromagnetic correlations at the high temperatures is inherent to the ideal stoichiometric LiZn$_2$Mo$_3$O$_8$.
LiZn$_2$Mo$_3$O$_8$ is an electrically insulating geometrically frustrated antiferromagnet in which inorganic Mo$_3$O$_{13}$ clusters each behaves as a single $S = 1/2$ unit, with the clusters arranged on a two-dimensional triangular lattice. Prior results have shown that LiZn$_2$Mo$_3$O$_8$ does not exhibit static magnetic order down to at least $T = 0.05,K$, and instead possesses a valence bond ground state. Here, we show that LiZn$_2$Mo$_3$O$_8$ can be hole doped by oxidation with $mathrm{I}_2$ and subsequent removal of $mathrm{Zn}^{2+}$ cations to access the entire range of electron count, from one to zero unpaired electrons per site on the triangular lattice. Contrary to expectations, no metallic state is induced; instead, the primary effect is to suppress the number of sites contributing to the condensed valence-bond state. Further, diffraction and pair-distribution function analysis show no evidence for local Jahn-Teller distortions or other deviations from the parent trigonal symmetry as a function of doping or temperature. Taken together, the data and density functional theory calculations indicate that removal of electrons from the magnetic layers favors Anderson localization of the resulting hole and an increase in the electrical band-gap over the formation of a metallic and superconducting state. These results put strong constraints on the chemical conditions necessary to realize metallic states from parent insulating geometrically frustrated antiferromagnets.
We investigated the static and dynamic magnetic properties of the polar ferrimagnet Mn$_2$Mo$_3$O$_8$ in three magnetically ordered phases via magnetization, magnetic torque, and THz absorption spectroscopy measurements. The observed magnetic field dependence of the spin-wave resonances, including Brillouin zone-center and zone-boundary excitations, magnetization, and torque, are well described by an extended two-sublattice antiferromagnetic classical mean-field model. In this orbitally quenched system, the competing weak easy-plane and easy-axis single-ion anisotropies of the two crystallographic sites are determined from the model and assigned to the tetra- and octahedral sites, respectively, by ab initio calculations.
We present both static and time-resolved second harmonic generation (SHG) measurements on polar antiferromagnet Fe$_2$Mo$_3$O$_8$ to monitor the evolution of the electric polarization change and its coupling to magnetic order. We find that only one of the second order tensor elements, $chi_{ccc}^{(2)}$ ,shows a prominent change below the Neel temperature $T_N = 60$ K, indicating a magnetic order induced electric polarization change along the c-axis. Time-resolved SHG measurement reveals an ultrafast recovery of the second order tensor element upon the ultrashort laser excitation with fluence above 0.3 $mJ/cm^2$, yielding evidence for a photoinduced ultrafast phase transition from the AFM ordered state to the paramagnetic state. Our work will help understand the spin induced polarization and the ultrafast optical tuning effect in Fe$_{2}$Mo$_{3}$O$_{8}$.