Do you want to publish a course? Click here

On Universality and Training in Binary Hypothesis Testing

77   0   0.0 ( 0 )
 Added by Michael Bell
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The classical binary hypothesis testing problem is revisited. We notice that when one of the hypotheses is composite, there is an inherent difficulty in defining an optimality criterion that is both informative and well-justified. For testing in the simple normal location problem (that is, testing for the mean of multivariate Gaussians), we overcome the difficulty as follows. In this problem there exists a natural hardness order between parameters as for different parameters the error-probailities curves (when the parameter is known) are either identical, or one dominates the other. We can thus define minimax performance as the worst-case among parameters which are below some hardness level. Fortunately, there exists a universal minimax test, in the sense that it is minimax for all hardness levels simultaneously. Under this criterion we also find the optimal test for composite hypothesis testing with training data. This criterion extends to the wide class of local asymptotic normal models, in an asymptotic sense where the approximation of the error probabilities is additive. Since we have the asymptotically optimal tests for composite hypothesis testing with and without training data, we quantify the loss of universality and gain of training data for these models.



rate research

Read More

The Lasso is a method for high-dimensional regression, which is now commonly used when the number of covariates $p$ is of the same order or larger than the number of observations $n$. Classical asymptotic normality theory is not applicable for this model due to two fundamental reasons: $(1)$ The regularized risk is non-smooth; $(2)$ The distance between the estimator $bf widehat{theta}$ and the true parameters vector $bf theta^star$ cannot be neglected. As a consequence, standard perturbative arguments that are the traditional basis for asymptotic normality fail. On the other hand, the Lasso estimator can be precisely characterized in the regime in which both $n$ and $p$ are large, while $n/p$ is of order one. This characterization was first obtained in the case of standard Gaussian designs, and subsequently generalized to other high-dimensional estimation procedures. Here we extend the same characterization to Gaussian correlated designs with non-singular covariance structure. This characterization is expressed in terms of a simpler ``fixed design model. We establish non-asymptotic bounds on the distance between distributions of various quantities in the two models, which hold uniformly over signals $bf theta^star$ in a suitable sparsity class, and values of the regularization parameter. As applications, we study the distribution of the debiased Lasso, and show that a degrees-of-freedom correction is necessary for computing valid confidence intervals.
330 - Eli Haim , Yuval Kochman 2017
We consider the problem of distributed binary hypothesis testing of two sequences that are generated by an i.i.d. doubly-binary symmetric source. Each sequence is observed by a different terminal. The two hypotheses correspond to different levels of correlation between the two source components, i.e., the crossover probability between the two. The terminals communicate with a decision function via rate-limited noiseless links. We analyze the tradeoff between the exponential decay of the two error probabilities associated with the hypothesis test and the communication rates. We first consider the side-information setting where one encoder is allowed to send the full sequence. For this setting, previous work exploits the fact that a decoding error of the source does not necessarily lead to an erroneous decision upon the hypothesis. We provide improved achievability results by carrying out a tighter analysis of the effect of binning error; the results are also more complete as they cover the full exponent tradeoff and all possible correlations. We then turn to the setting of symmetric rates for which we utilize Korner-Marton coding to generalize the results, with little degradation with respect to the performance with a one-sided constraint (side-information setting).
This paper studies the problem of high-dimensional multiple testing and sparse recovery from the perspective of sequential analysis. In this setting, the probability of error is a function of the dimension of the problem. A simple sequential testing procedure is proposed. We derive necessary conditions for reliable recovery in the non-sequential setting and contrast them with sufficient conditions for reliable recovery using the proposed sequential testing procedure. Applications of the main results to several commonly encountered models show that sequential testing can be exponentially more sensitive to the difference between the null and alternative distributions (in terms of the dependence on dimension), implying that subtle cases can be much more reliably determined using sequential methods.
Suppose we observe an infinite series of coin flips $X_1,X_2,ldots$, and wish to sequentially test the null that these binary random variables are exchangeable. Nonnegative supermartingales (NSMs) are a workhorse of sequential inference, but we prove that they are powerless for this problem. First, utilizing a geometric concept called fork-convexity (a sequential analog of convexity), we show that any process that is an NSM under a set of distributions, is also necessarily an NSM under their fork-convex hull. Second, we demonstrate that the fork-convex hull of the exchangeable null consists of all possible laws over binary sequences; this implies that any NSM under exchangeability is necessarily nonincreasing, hence always yields a powerless test for any alternative. Since testing arbitrary deviations from exchangeability is information theoretically impossible, we focus on Markovian alternatives. We combine ideas from universal inference and the method of mixtures to derive a safe e-process, which is a nonnegative process with expectation at most one under the null at any stopping time, and is upper bounded by a martingale, but is not itself an NSM. This in turn yields a level $alpha$ sequential test that is consistent; regret bounds from universal coding also demonstrate rate-optimal power. We present ways to extend these results to any finite alphabet and to Markovian alternatives of any order using a double mixture approach. We provide an array of simulations, and give general approaches based on betting for unstructured or ill-specified alternatives. Finally, inspired by Shafer, Vovk, and Ville, we provide game-theoretic interpretations of our e-processes and pathwise results.
We discuss a general approach to handling multiple hypotheses testing in the case when a particular hypothesis states that the vector of parameters identifying the distribution of observations belongs to a convex compact set associated with the hypothesis. With our approach, this problem reduces to testing the hypotheses pairwise. Our central result is a test for a pair of hypotheses of the outlined type which, under appropriate assumptions, is provably nearly optimal. The test is yielded by a solution to a convex programming problem, so that our construction admits computationally efficient implementation. We further demonstrate that our assumptions are satisfied in several important and interesting applications. Finally, we show how our approach can be applied to a rather general detection problem encompassing several classical statistical settings such as detection of abrupt signal changes, cusp detection and multi-sensor detection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا