Do you want to publish a course? Click here

Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling by Exploring Energy of the Discriminator

89   0   0.0 ( 0 )
 Added by Qiwei Ye
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data. The learning objective of GANs usually minimizes some measure discrepancy, textit{e.g.}, $f$-divergence~($f$-GANs) or Integral Probability Metric~(Wasserstein GANs). With $f$-divergence as the objective function, the discriminator essentially estimates the density ratio, and the estimated ratio proves useful in further improving the sample quality of the generator. However, how to leverage the information contained in the discriminator of Wasserstein GANs (WGAN) is less explored. In this paper, we introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGANs discriminator and the relationship between WGAN and energy-based model. Compared to standard GANs, where the generator is directly utilized to obtain new samples, our method proposes a semi-amortized generation procedure where the samples are produced with the generators output as an initial state. Then several steps of Langevin dynamics are conducted using the gradient of the discriminator. We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.



rate research

Read More

Recent works in Generative Adversarial Networks (GANs) are actively revisiting various data augmentation techniques as an effective way to prevent discriminator overfitting. It is still unclear, however, that which augmentations could actually improve GANs, and in particular, how to apply a wider range of augmentations in training. In this paper, we propose a novel way to address these questions by incorporating a recent contrastive representation learning scheme into the GAN discriminator, coined ContraD. This fusion enables the discriminators to work with much stronger augmentations without increasing their training instability, thereby preventing the discriminator overfitting issue in GANs more effectively. Even better, we observe that the contrastive learning itself also benefits from our GAN training, i.e., by maintaining discriminative features between real and fake samples, suggesting a strong coherence between the two worlds: good contrastive representations are also good for GAN discriminators, and vice versa. Our experimental results show that GANs with ContraD consistently improve FID and IS compared to other recent techniques incorporating data augmentations, still maintaining highly discriminative features in the discriminator in terms of the linear evaluation. Finally, as a byproduct, we also show that our GANs trained in an unsupervised manner (without labels) can induce many conditional generative models via a simple latent sampling, leveraging the learned features of ContraD. Code is available at https://github.com/jh-jeong/ContraD.
105 - Shaohao Lu , Yuqiao Xian , Ke Yan 2021
The Deep Neural Networks are vulnerable toadversarial exam-ples(Figure 1), making the DNNs-based systems collapsed byadding the inconspicuous perturbations to the images. Most of the existing works for adversarial attack are gradient-based and suf-fer from the latency efficiencies and the load on GPU memory. Thegenerative-based adversarial attacks can get rid of this limitation,and some relative works propose the approaches based on GAN.However, suffering from the difficulty of the convergence of train-ing a GAN, the adversarial examples have either bad attack abilityor bad visual quality. In this work, we find that the discriminatorcould be not necessary for generative-based adversarial attack, andpropose theSymmetric Saliency-based Auto-Encoder (SSAE)to generate the perturbations, which is composed of the saliencymap module and the angle-norm disentanglement of the featuresmodule. The advantage of our proposed method lies in that it is notdepending on discriminator, and uses the generative saliency map to pay more attention to label-relevant regions. The extensive exper-iments among the various tasks, datasets, and models demonstratethat the adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.The code is available at https://github.com/BravoLu/SSAE.
In this paper, we introduce PeerGAN, a generative adversarial network (GAN) solution to improve the stability of the generated samples and to mitigate mode collapse. Built upon the Vanilla GANs two-player game between the discriminator $D_1$ and the generator $G$, we introduce a peer discriminator $D_2$ to the min-max game. Similar to previous work using two discriminators, the first role of both $D_1$, $D_2$ is to distinguish between generated samples and real ones, while the generator tries to generate high-quality samples which are able to fool both discriminators. Different from existing methods, we introduce another game between $D_1$ and $D_2$ to discourage their agreement and therefore increase the level of diversity of the generated samples. This property alleviates the issue of early mode collapse by preventing $D_1$ and $D_2$ from converging too fast. We provide theoretical analysis for the equilibrium of the min-max game formed among $G, D_1, D_2$. We offer convergence behavior of PeerGAN as well as stability of the min-max game. Its worth mentioning that PeerGAN operates in the unsupervised setting, and the additional game between $D_1$ and $D_2$ does not need any label supervision. Experiments results on a synthetic dataset and on real-world image datasets (MNIST, Fashion MNIST, CIFAR-10, STL-10, CelebA, VGG) demonstrate that PeerGAN outperforms competitive baseline work in generating diverse and high-quality samples, while only introduces negligible computation cost.
While large-scale language models (LMs) are able to imitate the distribution of natural language well enough to generate realistic text, it is difficult to control which regions of the distribution they generate. This is especially problematic because datasets used for training large LMs usually contain significant toxicity, hate, bias, and negativity. We propose GeDi as an efficient method for using smaller LMs as generative discriminators to guide generation from large LMs to make them safer and more controllable. GeDi guides generation at each step by computing classification probabilities for all possible next tokens via Bayes rule by normalizing over two class-conditional distributions; one conditioned on the desired attribute, or control code, and another conditioned on the undesired attribute, or anti control code. We find that GeDi gives stronger controllability than the state of the art method while also achieving generation speeds more than 30 times faster. Additionally, training GeDi on only four topics allows us to controllably generate new topics zero-shot from just a keyword, unlocking a new capability that previous controllable generation methods do not have. Lastly, we show that GeDi can make GPT-2 (1.5B parameters) significantly less toxic without sacrificing linguistic quality, making it by far the most practical existing method for detoxifying large language models while maintaining a fast generation speed.
A recent technical breakthrough in the domain of machine learning is the discovery and the multiple applications of Generative Adversarial Networks (GANs). Those generative models are computationally demanding, as a GAN is composed of two deep neural networks, and because it trains on large datasets. A GAN is generally trained on a single server. In this paper, we address the problem of distributing GANs so that they are able to train over datasets that are spread on multiple workers. MD-GAN is exposed as the first solution for this problem: we propose a novel learning procedure for GANs so that they fit this distributed setup. We then compare the performance of MD-GAN to an adapted version of Federated Learning to GANs, using the MNIST and CIFAR10 datasets. MD-GAN exhibits a reduction by a factor of two of the learning complexity on each worker node, while providing better performances than federated learning on both datasets. We finally discuss the practical implications of distributing GANs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا