No Arabic abstract
Recent works in Generative Adversarial Networks (GANs) are actively revisiting various data augmentation techniques as an effective way to prevent discriminator overfitting. It is still unclear, however, that which augmentations could actually improve GANs, and in particular, how to apply a wider range of augmentations in training. In this paper, we propose a novel way to address these questions by incorporating a recent contrastive representation learning scheme into the GAN discriminator, coined ContraD. This fusion enables the discriminators to work with much stronger augmentations without increasing their training instability, thereby preventing the discriminator overfitting issue in GANs more effectively. Even better, we observe that the contrastive learning itself also benefits from our GAN training, i.e., by maintaining discriminative features between real and fake samples, suggesting a strong coherence between the two worlds: good contrastive representations are also good for GAN discriminators, and vice versa. Our experimental results show that GANs with ContraD consistently improve FID and IS compared to other recent techniques incorporating data augmentations, still maintaining highly discriminative features in the discriminator in terms of the linear evaluation. Finally, as a byproduct, we also show that our GANs trained in an unsupervised manner (without labels) can induce many conditional generative models via a simple latent sampling, leveraging the learned features of ContraD. Code is available at https://github.com/jh-jeong/ContraD.
Representation learning has significantly been developed with the advance of contrastive learning methods. Most of those methods have benefited from various data augmentations that are carefully designated to maintain their identities so that the images transformed from the same instance can still be retrieved. However, those carefully designed transformations limited us to further explore the novel patterns exposed by other transformations. Meanwhile, as found in our experiments, the strong augmentations distorted the images structures, resulting in difficult retrieval. Thus, we propose a general framework called Contrastive Learning with Stronger Augmentations~(CLSA) to complement current contrastive learning approaches. Here, the distribution divergence between the weakly and strongly augmented images over the representation bank is adopted to supervise the retrieval of strongly augmented queries from a pool of instances. Experiments on the ImageNet dataset and downstream datasets showed the information from the strongly augmented images can significantly boost the performance. For example, CLSA achieves top-1 accuracy of 76.2% on ImageNet with a standard ResNet-50 architecture with a single-layer classifier fine-tuned, which is almost the same level as 76.5% of supervised results. The code and pre-trained models are available in https://github.com/maple-research-lab/CLSA.
Many applications in machine learning can be framed as minimization problems and solved efficiently using gradient-based techniques. However, recent applications of generative models, particularly GANs, have triggered interest in solving min-max games for which standard optimization techniques are often not suitable. Among known problems experienced by practitioners is the lack of convergence guarantees or convergence to a non-optimum cycle. At the heart of these problems is the min-max structure of the GAN objective which creates non-trivial dependencies between the players. We propose to address this problem by optimizing a different objective that circumvents the min-max structure using the notion of duality gap from game theory. We provide novel convergence guarantees on this objective and demonstrate why the obtained limit point solves the problem better than known techniques.
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data. The learning objective of GANs usually minimizes some measure discrepancy, textit{e.g.}, $f$-divergence~($f$-GANs) or Integral Probability Metric~(Wasserstein GANs). With $f$-divergence as the objective function, the discriminator essentially estimates the density ratio, and the estimated ratio proves useful in further improving the sample quality of the generator. However, how to leverage the information contained in the discriminator of Wasserstein GANs (WGAN) is less explored. In this paper, we introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGANs discriminator and the relationship between WGAN and energy-based model. Compared to standard GANs, where the generator is directly utilized to obtain new samples, our method proposes a semi-amortized generation procedure where the samples are produced with the generators output as an initial state. Then several steps of Langevin dynamics are conducted using the gradient of the discriminator. We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
Contrastive learning (CL) has recently emerged as an effective approach to learning representation in a range of downstream tasks. Central to this approach is the selection of positive (similar) and negative (dissimilar) sets to provide the model the opportunity to `contrast between data and class representation in the latent space. In this paper, we investigate CL for improving model robustness using adversarial samples. We first designed and performed a comprehensive study to understand how adversarial vulnerability behaves in the latent space. Based on these empirical evidences, we propose an effective and efficient supervised contrastive learning to achieve model robustness against adversarial attacks. Moreover, we propose a new sample selection strategy that optimizes the positive/negative sets by removing redundancy and improving correlation with the anchor. Experiments conducted on benchmark datasets show that our Adversarial Supervised Contrastive Learning (ASCL) approach outperforms the state-of-the-art defenses by $2.6%$ in terms of the robust accuracy, whilst our ASCL with the proposed selection strategy can further gain $1.4%$ improvement with only $42.8%$ positives and $6.3%$ negatives compared with ASCL without a selection strategy.
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.