Do you want to publish a course? Click here

The production of the doubly charmed baryon in deeply inelastic $ep$ scattering at the Large Hadron Electron Collider

109   0   0.0 ( 0 )
 Added by Zhan Sun
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we carry out a detailed study on the production of the doubly charmed baryon in deeply inelastic $ep$ scattering (DIS) for $Q^2in[2, 100]~textrm{GeV}^2$, at the Large Hadron Electron Collider (LHeC) with $E_e=60(140)$ GeV and $E_p=7000$ GeV. To exclude the contributions from the diffractive productions and the $b$ hadron decays, we impose the kinematic cuts $0.3<z<0.9$, and $p_{t,textrm{baryon}}^{star2}>1~textrm{GeV}^2$ in the center-of-mass (CM) frame of $gamma^{*}p$. Based on the designed LHeC luminosity, by detecting the decay channel $Xi^{+}_{cc}(Xi^{++}_{cc}) to Lambda_c^{+}$ with the subsequent decay $Lambda_c^{+} to pK^{-}pi^{+}$, we predict that about 1880 (2700) $Xi^{+}_{cc}$ events and 3750 (5400) $Xi^{++}_{cc}$ events can be accumulated per year, which signifies the prospect of observing them via the DIS at the forthcoming LHeC. In addition, we also predict the distributions of a rich variety of physical observables in the laboratory frame and the $gamma^{*}p$ CM frame, including $Q^2$, $p_t^{2}$, $Y$(rapidity), $p_t^{star2}$, $Y^{star}$, $W$, and $z$ distributions, respectively, which can provide helpful references for studying the doubly charmed baryon. In conclusion, we think that in addition to the LHC, the LHeC is also a helpful platform for studying the properties of the doubly charmed baryon.



rate research

Read More

200 - Durmus A. Demir 2008
Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model (MSSM) or in any of its extensions motivated by the mu problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider (LHC) in both pair-- and single--production modes, and show that they are powerful tools in determining the underlying model via the measurements at the LHC experiments.
For the foreseeable future, the exploration of the high-energy frontier will be the domain of the Large Hadron Collider (LHC). Of particular significance will be its high-luminosity upgrade (HL-LHC), which will operate until the mid-2030s. In this endeavour, for the full exploitation of the HL-LHC physics potential an improved understanding of the parton distribution functions (PDFs) of the proton is critical. The HL-LHC program would be uniquely complemented by the proposed Large Hadron electron Collider (LHeC), a high-energy lepton-proton and lepton-nucleus collider based at CERN. In this work, we build on our recent PDF projections for the HL-LHC to assess the constraining power of the LHeC measurements of inclusive and heavy quark structure functions. We find that the impact of the LHeC would be significant, reducing PDF uncertainties by up to an order of magnitude in comparison to state-of-the-art global fits. In comparison to the HL-LHC projections, the PDF constraints from the LHeC are in general more significant for small and intermediate values of the momentum fraction x. At higher values of x, the impact of the LHeC and HL-LHC data is expected to be of a comparable size, with the HL-LHC constraints being more competitive in some cases, and the LHeC ones in others. Our results illustrate the encouraging complementarity of the HL-LHC and the LHeC in terms of charting the quark and gluon structure of the proton.
The production of two weak bosons at the Large Hadron Collider will be one of the most important sources of SM backgrounds for final states with multiple leptons. In this paper we consider several quantities that can help normalize the production of weak boson pairs. Ratios of inclusive cross-sections for production of two weak bosons and Drell-Yan are investigated and the corresponding theoretical errors are evaluated. The possibility of predicting the jet veto survival probability of VV production from Drell-Yan data is also considered. Overall, the theoretical errors on all quantities remain less than 5-20%. The dependence of these quantities on the center of mass energy of the proton-proton collision is also studied.
The Large Hadron electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High Luminosity--Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operation. This report represents an update of the Conceptual Design Report (CDR) of the LHeC, published in 2012. It comprises new results on parton structure of the proton and heavier nuclei, QCD dynamics, electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics in extending the accessible kinematic range in lepton-nucleus scattering by several orders of magnitude. Due to enhanced luminosity, large energy and the cleanliness of the hadronic final states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, the report represents a detailed updated design of the energy recovery electron linac (ERL) including new lattice, magnet, superconducting radio frequency technology and further components. Challenges of energy recovery are described and the lower energy, high current, 3-turn ERL facility, PERLE at Orsay, is presented which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution and calibration goals which arise from the Higgs and parton density function physics programmes. The paper also presents novel results on the Future Circular Collider in electron-hadron mode, FCC-eh, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
101 - C. Glasman 2003
Recent results from jet production in deep inelastic ep scattering at HERA are reviewed. The values of alpha_s(M_z) extracted from a QCD analysis of the data are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا