Do you want to publish a course? Click here

Signals of Doubly-Charged Higgsinos at the CERN Large Hadron Collider

194   0   0.0 ( 0 )
 Added by Ismail Turan
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model (MSSM) or in any of its extensions motivated by the mu problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider (LHC) in both pair-- and single--production modes, and show that they are powerful tools in determining the underlying model via the measurements at the LHC experiments.



rate research

Read More

Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study the signals of doubly-charged Higgsinos at the Tevatron in both pair-- and single--production modes, and show that it is possible, especially from the events containing same-sign same-flavor isolated leptons, to disentangle the effects of doubly-charged Higgsinos in the Tevatron data.
This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.
We investigate the viability of observing charged Higgs bosons (H^+/-) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W-decay, within different scenarios of the Minimal Supersymmetric Standard Model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible Standard Model background from W+2 jets can be controlled by applying appropriate cuts and find that the size of a possible signal depends on the cuts needed to suppress QCD backgrounds and misidentifications. In the standard maximal mixing scenario of the MSSM we find a viable signal for large tan(beta) and intermediate H^+/- masses (~m_t) when using optimistic cuts whereas for more pessimistic ones we only find a viable signal for very large tan(beta) (>~50). We have also investigated a special class of MSSM scenarios with large mass-splittings among the heavy Higgs bosons where the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the CP-violating phases. Even so we find that the signal after cuts remains small except for small masses (~< m_t) with optimistic cuts. Finally, in all the scenarios we have investigated we have only found small CP-asymmetries.
In supersymmetric theory, the sfermion-fermion-gaugino interactions conserve the chirality of (s)fermions. The effect appears as the charge asymmetry in $m(jl)$ distributions at the CERN Large Hadron Collider where jets and leptons arise from the cascade decay $tilde{q} to q tilde{chi}^0_2 to qltilde{l}$. Furthermore, the decay branching ratios and the charge asymmetries in $m(jl)$ distributions are flavor non-universal due to the $tilde{l}_L$ and $tilde{l}_R$ mixing. When $tanbeta$ is large, the non-universality between $e$ and $mu$ becomes $O(10)%$ level. We perform a Monte Carlo simulation for some minimal supergravity benchmark points to demonstrate the detectability.
Weak singlet charged scalar exists in many new physics models beyond the Standard Model. In this work we show that a light singlet charged scalar with mass above 65~GeV is still allowed by the LEP and LHC data. The interactions of the singlet charged scalar with the Standard Model particles are described by operators up to dimension-5. Dominant decay modes of the singlet charged scalar are obtained, and a subtlety involving field redefinition and gauge fixing due to a dimension-5 operator is also clarified. We demonstrate that it is promising to observe the singlet charged scalar at the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا