Do you want to publish a course? Click here

Label-Efficient Learning on Point Clouds using Approximate Convex Decompositions

93   0   0.0 ( 0 )
 Added by Matheus Gadelha
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The problems of shape classification and part segmentation from 3D point clouds have garnered increasing attention in the last few years. Both of these problems, however, suffer from relatively small training sets, creating the need for statistically efficient methods to learn 3D shape representations. In this paper, we investigate the use of Approximate Convex Decompositions (ACD) as a self-supervisory signal for label-efficient learning of point cloud representations. We show that using ACD to approximate ground truth segmentation provides excellent self-supervision for learning 3D point cloud representations that are highly effective on downstream tasks. We report improvements over the state-of-the-art for unsupervised representation learning on the ModelNet40 shape classification dataset and significant gains in few-shot part segmentation on the ShapeNetPart dataset.Code available at https://github.com/matheusgadelha/PointCloudLearningACD



rate research

Read More

Point clouds provide a compact and efficient representation of 3D shapes. While deep neural networks have achieved impressive results on point cloud learning tasks, they require massive amounts of manually labeled data, which can be costly and time-consuming to collect. In this paper, we leverage 3D self-supervision for learning downstream tasks on point clouds with fewer labels. A point cloud can be rotated in infinitely many ways, which provides a rich label-free source for self-supervision. We consider the auxiliary task of predicting rotations that in turn leads to useful features for other tasks such as shape classification and 3D keypoint prediction. Using experiments on ShapeNet and ModelNet, we demonstrate that our approach outperforms the state-of-the-art. Moreover, features learned by our model are complementary to other self-supervised methods and combining them leads to further performance improvement.
Reconstruction of directional fields is a need in many geometry processing tasks, such as image tracing, extraction of 3D geometric features, and finding principal surface directions. A common approach to the construction of directional fields from data relies on complex optimization procedures, which are usually poorly formalizable, require a considerable computational effort, and do not transfer across applications. In this work, we propose a deep learning-based approach and study the expressive power and generalization ability.
Collecting labeled data for the task of semantic segmentation is expensive and time-consuming, as it requires dense pixel-level annotations. While recent Convolutional Neural Network (CNN) based semantic segmentation approaches have achieved impressive results by using large amounts of labeled training data, their performance drops significantly as the amount of labeled data decreases. This happens because deep CNNs trained with the de facto cross-entropy loss can easily overfit to small amounts of labeled data. To address this issue, we propose a simple and effective contrastive learning-based training strategy in which we first pretrain the network using a pixel-wise, label-based contrastive loss, and then fine-tune it using the cross-entropy loss. This approach increases intra-class compactness and inter-class separability, thereby resulting in a better pixel classifier. We demonstrate the effectiveness of the proposed training strategy using the Cityscapes and PASCAL VOC 2012 segmentation datasets. Our results show that pretraining with the proposed contrastive loss results in large performance gains (more than 20% absolute improvement in some settings) when the amount of labeled data is limited. In many settings, the proposed contrastive pretraining strategy, which does not use any additional data, is able to match or outperform the widely-used ImageNet pretraining strategy that uses more than a million additional labeled images.
159 - Kaizhi Yang , Xuejin Chen 2021
Representing complex 3D objects as simple geometric primitives, known as shape abstraction, is important for geometric modeling, structural analysis, and shape synthesis. In this paper, we propose an unsupervised shape abstraction method to map a point cloud into a compact cuboid representation. We jointly predict cuboid allocation as part segmentation and cuboid shapes and enforce the consistency between the segmentation and shape abstraction for self-learning. For the cuboid abstraction task, we transform the input point cloud into a set of parametric cuboids using a variational auto-encoder network. The segmentation network allocates each point into a cuboid considering the point-cuboid affinity. Without manual annotations of parts in point clouds, we design four novel losses to jointly supervise the two branches in terms of geometric similarity and cuboid compactness. We evaluate our method on multiple shape collections and demonstrate its superiority over existing shape abstraction methods. Moreover, based on our network architecture and learned representations, our approach supports various applications including structured shape generation, shape interpolation, and structural shape clustering.
We propose a novel, conceptually simple and general framework for instance segmentation on 3D point clouds. Our method, called 3D-BoNet, follows the simple design philosophy of per-point multilayer perceptrons (MLPs). The framework directly regresses 3D bounding boxes for all instances in a point cloud, while simultaneously predicting a point-level mask for each instance. It consists of a backbone network followed by two parallel network branches for 1) bounding box regression and 2) point mask prediction. 3D-BoNet is single-stage, anchor-free and end-to-end trainable. Moreover, it is remarkably computationally efficient as, unlike existing approaches, it does not require any post-processing steps such as non-maximum suppression, feature sampling, clustering or voting. Extensive experiments show that our approach surpasses existing work on both ScanNet and S3DIS datasets while being approximately 10x more computationally efficient. Comprehensive ablation studies demonstrate the effectiveness of our design.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا