Do you want to publish a course? Click here

Extremality of graph entropy based on Laplacian degrees of k-uniform hypergraphs

94   0   0.0 ( 0 )
 Added by Pengli Lu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The graph entropy describes the structural information of graph. Motivated by the definition of graph entropy in general graphs, the graph entropy of hypergraphs based on Laplacian degree are defined. Some results on graph entropy of simple graphs are extended to k-uniform hypergraphs. Using an edge-moving operation, the maximum and minimum graph entropy based on Laplacian degrees are determined in k-uniform hypertrees, unicyclic k-uniform hypergraphs, bicyclic k-uniform hypergraphs and k-uniform chemical hypertrees, respectively, and the corresponding extremal graphs are determined.



rate research

Read More

Let $mathcal{H}$ be a hypergraph with $n$ vertices. Suppose that $d_1,d_2,ldots,d_n$ are degrees of the vertices of $mathcal{H}$. The $t$-th graph entropy based on degrees of $mathcal{H}$ is defined as $$ I_d^t(mathcal{H}) =-sum_{i=1}^{n}left(frac{d_i^{t}}{sum_{j=1}^{n}d_j^{t}}logfrac{d_i^{t}}{sum_{j=1}^{n}d_j^{t}}right) =logleft(sum_{i=1}^{n}d_i^{t}right)-sum_{i=1}^{n}left(frac{d_i^{t}}{sum_{j=1}^{n}d_j^{t}}log d_i^{t}right), $$ where $t$ is a real number and the logarithm is taken to the base two. In this paper we obtain upper and lower bounds of $I_d^t(mathcal{H})$ for $t=1$, when $mathcal{H}$ is among all uniform supertrees, unicyclic uniform hypergraphs and bicyclic uniform hypergraphs, respectively.
A remarkable connection between the order of a maximum clique and the Lagrangian of a graph was established by Motzkin and Straus in [7]. This connection and its extensions were successfully employed in optimization to provide heuristics for the maximum clique number in graphs. It has been also applied in spectral graph theory. Estimating the Lagrangians of hypergraphs has been successfully applied in the course of studying the Turan densities of several hypergraphs as well. It is useful in practice if Motzkin-Straus type results hold for hypergraphs. However, the obvious generalization of Motzkin and Straus result to hypergraphs is false. We attempt to explore the relationship between the Lagrangian of a hypergraph and the order of its maximum cliques for hypergraphs when the number of edges is in certain range. In this paper, we give some Motzkin-Straus type results for r-uniform hypergraphs. These results generalize and refine a result of Talbot in [19] and a result in [11].
There is a remarkable connection between the maximum clique number and the Lagrangian of a graph given by T. S. Motzkin and E.G. Straus in 1965. This connection and its extensions were successfully employed in optimization to provide heuristics for the maximum clique number in graphs. It is useful in practice if similar results hold for hypergraphs. In this paper, we explore evidences that the Lagrangian of a 3-uniform hypergraph is related to the order of its maximum cliques when the number of edges of the hypergraph is in certain range. In particular, we present some results about a conjecture introduced by Y. Peng and C. Zhao (2012) and describe a combinatorial algorithm that can be used to check the validity of the conjecture.
Let $G$ be a connected uniform hypergraphs with maximum degree $Delta$, spectral radius $lambda$ and minimum H-eigenvalue $mu$. In this paper, we give some lower bounds for $Delta-lambda$, which extend the result of [S.M. Cioabu{a}, D.A. Gregory, V. Nikiforov, Extreme eigenvalues of nonregular graphs, J. Combin. Theory, Ser. B 97 (2007) 483-486] to hypergraphs. Applying these bounds, we also obtain a lower bound for $Delta+mu$.
92 - Luyining Gan , Jie Han , Lin Sun 2021
Let $Y_{3,2}$ be the $3$-uniform hypergraph with two edges intersecting in two vertices. Our main result is that any $n$-vertex 3-uniform hypergraph with at least $binom{n}{3} - binom{n-m+1}{3} + o(n^3)$ edges contains a collection of $m$ vertex-disjoint copies of $Y_{3,2}$, for $mle n/7$. The bound on the number of edges is asymptotically best possible. This can be viewed as a generalization of the ErdH{o}s Matching Conjecture.We then use this result together with the absorbing method to determine the asymptotically best possible minimum $(k-3)$-degree threshold for $ell$-Hamiltonicity in $k$-graphs, where $kge 7$ is odd and $ell=(k-1)/2$. Moreover, we give related results on $ Y_{k,b} $-tilings and Hamilton $ ell $-cycles with $ d $-degree for some other $ k,ell,d $.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا