Do you want to publish a course? Click here

Large $ Y_{k,b} $-tilings and Hamilton $ ell $-cycles in $k$-uniform hypergraphs

93   0   0.0 ( 0 )
 Added by Lin Sun
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $Y_{3,2}$ be the $3$-uniform hypergraph with two edges intersecting in two vertices. Our main result is that any $n$-vertex 3-uniform hypergraph with at least $binom{n}{3} - binom{n-m+1}{3} + o(n^3)$ edges contains a collection of $m$ vertex-disjoint copies of $Y_{3,2}$, for $mle n/7$. The bound on the number of edges is asymptotically best possible. This can be viewed as a generalization of the ErdH{o}s Matching Conjecture.We then use this result together with the absorbing method to determine the asymptotically best possible minimum $(k-3)$-degree threshold for $ell$-Hamiltonicity in $k$-graphs, where $kge 7$ is odd and $ell=(k-1)/2$. Moreover, we give related results on $ Y_{k,b} $-tilings and Hamilton $ ell $-cycles with $ d $-degree for some other $ k,ell,d $.



rate research

Read More

We show that, for a natural notion of quasirandomness in $k$-uniform hypergraphs, any quasirandom $k$-uniform hypergraph on $n$ vertices with constant edge density and minimum vertex degree $Omega(n^{k-1})$ contains a loose Hamilton cycle. We also give a construction to show that a $k$-uniform hypergraph satisfying these conditions need not contain a Hamilton $ell$-cycle if $k-ell$ divides $k$. The remaining values of $ell$ form an interesting open question.
A tight Hamilton cycle in a $k$-uniform hypergraph ($k$-graph) $G$ is a cyclic ordering of the vertices of $G$ such that every set of $k$ consecutive vertices in the ordering forms an edge. R{o}dl, Ruci{n}ski, and Szemer{e}di proved that for $kgeq 3$, every $k$-graph on $n$ vertices with minimum codegree at least $n/2+o(n)$ contains a tight Hamilton cycle. We show that the number of tight Hamilton cycles in such $k$-graphs is $exp(nln n-Theta(n))$. As a corollary, we obtain a similar estimate on the number of Hamilton $ell$-cycles in such $k$-graphs for all $ellin{0,dots,k-1}$, which makes progress on a question of Ferber, Krivelevich and Sudakov.
In an $r$-uniform hypergraph on $n$ vertices a tight Hamilton cycle consists of $n$ edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of $r$ vertices. We provide a first deterministic polynomial time algorithm, which finds a.a.s. tight Hamilton cycles in random $r$-uniform hypergraphs with edge probability at least $C log^3n/n$. Our result partially answers a question of Dudek and Frieze [Random Structures & Algorithms 42 (2013), 374-385] who proved that tight Hamilton cycles exists already for $p=omega(1/n)$ for $r=3$ and $p=(e + o(1))/n$ for $rge 4$ using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Bottcher, Kohayakawa and Person [Random Structures & Algorithms 46 (2015), 446-465] and Nenadov and v{S}koric [arXiv:1601.04034] in various ways: the algorithm of Allen et al. is a randomised polynomial time algorithm working for edge probabilities $pge n^{-1+varepsilon}$, while the algorithm of Nenadov and v{S}koric is a randomised quasipolynomial time algorithm working for edge probabilities $pge Clog^8n/n$.
90 - Guanwu Liu , Xiaonan Liu 2021
In 1999, Katona and Kierstead conjectured that if a $k$-uniform hypergraph $cal H$ on $n$ vertices has minimum co-degree $lfloor frac{n-k+3}{2}rfloor$, i.e., each set of $k-1$ vertices is contained in at least $lfloor frac{n-k+3}{2}rfloor$ edges, then it has a Hamiltonian cycle. R{o}dl, Ruci{n}ski and Szemer{e}di in 2011 proved that the conjecture is true when $k=3$ and $n$ is large. We show that this Katona-Kierstead conjecture holds if $k=4$, $n$ is large, and $V({cal H})$ has a partition $A$, $B$ such that $|A|=lceil n/2rceil$, $|{ein E({cal H}):|e cap A|=2}| <epsilon n^4$.
In this paper we generalize the concept of uniquely $K_r$-saturated graphs to hypergraphs. Let $K_r^{(k)}$ denote the complete $k$-uniform hypergraph on $r$ vertices. For integers $k,r,n$ such that $2le k <r<n$, a $k$-uniform hypergraph $H$ with $n$ vertices is uniquely $K_r^{(k)}$-saturated if $H$ does not contain $K_r^{(k)}$ but adding to $H$ any $k$-set that is not a hyperedge of $H$ results in exactly one copy of $K_r^{(k)}$. Among uniquely $K_r^{(k)}$-saturated hypergraphs, the interesting ones are the primitive ones that do not have a dominating vertex---a vertex belonging to all possible ${n-1choose k-1}$ edges. Translating the concept to the complements of these hypergraphs, we obtain a natural restriction of $tau$-critical hypergraphs: a hypergraph $H$ is uniquely $tau$-critical if for every edge $e$, $tau(H-e)=tau(H)-1$ and $H-e$ has a unique transversal of size $tau(H)-1$. We have two constructions for primitive uniquely $K_r^{(k)}$-saturated hypergraphs. One shows that for $k$ and $r$ where $4le k<rle 2k-3$, there exists such a hypergraph for every $n>r$. This is in contrast to the case $k=2$ and $r=3$ where only the Moore graphs of diameter two have this property. Our other construction keeps $n-r$ fixed; in this case we show that for any fixed $kge 2$ there can only be finitely many examples. We give a range for $n$ where these hypergraphs exist. For $n-r=1$ the range is completely determined: $k+1le n le {(k+2)^2over 4}$. For larger values of $n-r$ the upper end of our range reaches approximately half of its upper bound. The lower end depends on the chromatic number of certain Johnson graphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا