Do you want to publish a course? Click here

On the spectral radius of nonregular uniform hypergraphs

110   0   0.0 ( 0 )
 Added by Changjiang Bu
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Let $G$ be a connected uniform hypergraphs with maximum degree $Delta$, spectral radius $lambda$ and minimum H-eigenvalue $mu$. In this paper, we give some lower bounds for $Delta-lambda$, which extend the result of [S.M. Cioabu{a}, D.A. Gregory, V. Nikiforov, Extreme eigenvalues of nonregular graphs, J. Combin. Theory, Ser. B 97 (2007) 483-486] to hypergraphs. Applying these bounds, we also obtain a lower bound for $Delta+mu$.



rate research

Read More

In this paper, we give some bounds for principal eigenvector and spectral radius of connected uniform hypergraphs in terms of vertex degrees, the diameter, and the number of vertices and edges.
For $0leq alpha < 1$, the $mathcal{A}_{alpha}$-spectral radius of a $k$-uniform hypergraph $G$ is defined to be the spectral radius of the tensor $mathcal{A}_{alpha}(G):=alpha mathcal{D}(G)+(1-alpha) mathcal{A}(G)$, where $mathcal{D}(G)$ and $A(G)$ are diagonal and the adjacency tensors of $G$ respectively. This paper presents several lower bounds for the difference between the $mathcal{A}_{alpha}$-spectral radius and an average degree $frac{km}{n}$ for a connected $k$-uniform hypergraph with $n$ vertices and $m$ edges, which may be considered as the measures of irregularity of $G$. Moreover, two lower bounds on the $mathcal{A}_{alpha}$-spectral radius are obtained in terms of the maximum and minimum degrees of a hypergraph.
The $p$-spectral radius of a uniform hypergraph covers many important concepts, such as Lagrangian and spectral radius of the hypergraph, and is crucial for solving spectral extremal problems of hypergraphs. In this paper, we establish a spherically constrained maximization model and propose a first-order conjugate gradient algorithm to compute the $p$-spectral radius of a uniform hypergraph (CSRH). By the semialgebraic nature of the adjacency tensor of a uniform hypergraph, CSRH is globally convergent and obtains the global maximizer with a high probability. When computing the spectral radius of the adjacency tensor of a uniform hypergraph, CSRH stands out among existing approaches. Furthermore, CSRH is competent to calculate the $p$-spectral radius of a hypergraph with millions of vertices and to approximate the Lagrangian of a hypergraph. Finally, we show that the CSRH method is capable of ranking real-world data set based on solutions generated by the $p$-spectral radius model.
A remarkable connection between the order of a maximum clique and the Lagrangian of a graph was established by Motzkin and Straus in [7]. This connection and its extensions were successfully employed in optimization to provide heuristics for the maximum clique number in graphs. It has been also applied in spectral graph theory. Estimating the Lagrangians of hypergraphs has been successfully applied in the course of studying the Turan densities of several hypergraphs as well. It is useful in practice if Motzkin-Straus type results hold for hypergraphs. However, the obvious generalization of Motzkin and Straus result to hypergraphs is false. We attempt to explore the relationship between the Lagrangian of a hypergraph and the order of its maximum cliques for hypergraphs when the number of edges is in certain range. In this paper, we give some Motzkin-Straus type results for r-uniform hypergraphs. These results generalize and refine a result of Talbot in [19] and a result in [11].
116 - Cunxiang Duan , Ligong Wang 2020
The spectral radius (or the signless Laplacian spectral radius) of a general hypergraph is the maximum modulus of the eigenvalues of its adjacency (or its signless Laplacian) tensor. In this paper, we firstly obtain a lower bound of the spectral radius (or the signless Laplacian spectral radius) of general hypergraphs in terms of clique number. Moreover, we present a relation between a homogeneous polynomial and the clique number of general hypergraphs. As an application, we finally obtain an upper bound of the spectral radius of general hypergraphs in terms of clique number.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا