Do you want to publish a course? Click here

The size of our causal Universe

87   0   0.0 ( 0 )
 Added by Enrique Gaztanaga
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A Universe with finite age also has a finite causal scale. Larger scales can not affect our local measurements or modeling, but far away locations could have different cosmological parameters. The size of our causal Universe depends on the details of inflation and is usually assumed to be larger than our observable Universe today. To account for causality, we propose a new boundary condition, that can be fulfill by fixing the cosmological constant (a free geometric parameter of gravity). This forces a cancellation of vacuum energy with the cosmological constant. As a consequence, the measured cosmic acceleration can not be explained by a simple cosmological constant or constant vacuum energy. We need some additional odd properties such as the existence of evolving dark energy (DE) with energy-density fine tuned to be twice that of dark matter today. We show here that we can instead explain cosmic acceleration without DE (or modified gravity) assuming that the causal scale is smaller than the observable Universe today. Such scale corresponds to half the sky at z=1 and 60 degrees at z=1100, which is consistent with the anomalous lack of correlations observed in the CMB. Late time cosmic acceleration could then be interpreted as the smoking gun of primordial Inflation.



rate research

Read More

143 - Enrique Gaztanaga 2019
The cosmological constant $Lambda$ is a free parameter in Einsteins equations of gravity. We propose to fix its value with a boundary condition: test particles should be free when outside causal contact, e.g. at infinity. Under this condition, we show that constant vacuum energy does not change cosmic expansion and there can not be cosmic acceleration for an infinitely large and uniform Universe. The observed acceleration requires either a large Universe with evolving Dark Energy (DE) and equation of state $omega>-1$ or a finite causal boundary (that we call Causal Universe) without DE. The former cant explain why $Omega_Lambda simeq 2.3 Omega_m$ today, something that comes naturally with a finite Causal Universe. This boundary condition, combined with the anomalous lack of correlations observed above 60 degrees in the CMB predicts $Omega_Lambda simeq 0.70$ for a flat universe, with independence of any other measurements. This solution provides new clues and evidence for inflation and removes the need for Dark Energy or Modified Gravity.
Cause-and-effect reasoning, the attribution of effects to causes, is one of the most powerful and unique skills humans possess. Multiple surveys are mapping out causal attributions as networks, but it is unclear how well these efforts can be combined. Further, the total size of the collective causal attribution network held by humans is currently unknown, making it challenging to assess the progress of these surveys. Here we study three causal attribution networks to determine how well they can be combined into a single network. Combining these networks requires dealing with ambiguous nodes, as nodes represent written descriptions of causes and effects and different descriptions may exist for the same concept. We introduce NetFUSES, a method for combining networks with ambiguous nodes. Crucially, treating the different causal attributions networks as independent samples allows us to use their overlap to estimate the total size of the collective causal attribution network. We find that existing surveys capture 5.77% $pm$ 0.781% of the $approx$293 000 causes and effects estimated to exist, and 0.198% $pm$ 0.174% of the $approx$10 200 000 attributed cause-effect relationships.
According to General Relativity (GR) a universe with a cosmological constant, Lambda, like ours, is trapped inside an event horizon r< sqrt(3/Lambda). What is outside? We show, using Israel (1967) junction conditions, that there could be a different universe outside. Our Universe looks like a Black Hole for an outside observer. Outgoing radial null geodesics can not escape our universe, but incoming photons can enter and leave an imprint on our CMB sky. We present a picture of such a fossil record from the analysis of CMB maps that agrees with the Black Hole universe predictions but challenge our understanding of the origin of the primordial universe.
This document is the Special Issue of the First International Conference on the Evolution and Development of the Universe (EDU 2008). Please refer to the preface and introduction for more details on the contributions. Keywords: acceleration, artificial cosmogenesis, artificial life, Big Bang, Big History, biological evolution, biological universe, biology, causality, classical vacuum energy, complex systems, complexity, computational universe, conscious evolution, cosmological artificial selection, cosmological natural selection, cosmology, critique, cultural evolution, dark energy, dark matter, development of the universe, development, emergence, evolution of the universe evolution, exobiology, extinction, fine-tuning, fractal space-time, fractal, information, initial conditions, intentional evolution, linear expansion of the universe, log-periodic laws, macroevolution, materialism, meduso-anthropic principle, multiple worlds, natural sciences, Nature, ontology, order, origin of the universe, particle hierarchy, philosophy, physical constants, quantum darwinism, reduction, role of intelligent life, scale relativity, scientific evolution, self-organization, speciation, specification hierarchy, thermodynamics, time, universe, vagueness.
The causal limit usually considered in cosmology is the particle horizon, delimiting the possibilities of causal connection in the expanding universe. However it is not a realistic indicator of the effective local limits of important interactions in spacetime. We consider here the matter horizon for the Solar System, that is,the comoving region which has contributed matter to our local physical environment. This lies inside the effective domain of dependence, which (assuming the universe is dominated by dark matter along with baryonic matter and vacuum-energy-like dark energy) consists of those regions that have had a significant active physical influence on this environment through effects such as matter accretion and acoustic waves. It is not determined by the velocity of light c, but by the flow of matter perturbations along their world lines and associated gravitational effects. We emphasize how small a region the perturbations which became our Galaxy occupied, relative to the observable universe -- even relative to the smallest-scale perturbations detectable in the cosmic microwave background radiation. Finally, looking to the future of our cosmic domain, we suggest simple dynamical criteria for determining the present domain of influence and the future matter horizon. The former is the radial distance at which our local region is just now separating from the cosmic expansion. The latter represents the limits of growth of the matter horizon in the far future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا