Do you want to publish a course? Click here

High Intrinsic Catalytic Activity of Two-Dimensional Boron Monolayers for Hydrogen Evolution Reaction

299   0   0.0 ( 0 )
 Added by Li Shi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) boron monolayers have been successfully synthesized on silver substrate very recently. Their potential application is thus of great significance. In this work, we explore the possibility of boron monolayers (BMs) as electrocatalysts for hydrogen evolution reaction (HER) by first-principle method. Our calculations show that the BMs are active catalysts for HER with nearly zero free energy of hydrogen adsorption, metallic conductivity and plenty of active sites in the basal plane. The effect of the substrate on the HER activity is further assessed. It is found that the substrate has a positive effect on the HER performance caused by the competitive effect of mismatch strain and charge transfer. The indepth understanding of the structure dependent HER activity is also provided.



rate research

Read More

Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films towards the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way. Both theory and experiment show strain controls reactivity in a controlled manner consistent with the qualitative predictions of the HER volcano plot and the d-band theory: Ni and Pt activity were accelerated by compression, while Cu activity was accelerated by tension. By isolating the elastic strain effect from the ligand effect, this study provides a greater insight into the role of elastic strain in controlling electrocatalytic activity.
The design of efficient electrocatalysts for electrochemical water splitting with minimal amount of precious metal is crucial to attain renewable and sustainable energy conversion. Here, we report the use of a network of CdSe branched colloidal nanocrystals, made of a CdSe core and eight CdSe pods (so-called octapods), able to host on their pods Pt particles, and thus catalyzing water splitting reactions. Thanks to the octapod shape, the resulting Pt-hosting network is mechanically trapped onto carbon nanotube buckypaper, providing mechanically flexible and binder-free electrodes. We found that such hierarchical configuration maximizes the mass activity and the utilization efficiency of Pt for the hydrogen evolution reaction (HER). At a potential of -0.15 V vs. reversible hydrogen electrode, the Pt/octapod network-based electrodes display a Pt mass activity on the HER of 166 A mg-1 and 42 A mg-1 in acidic and alkaline media, respectively. These values correspond to turnover frequencies of 168 s-1 and 42 s-1, respectively, which are in that order 14 and 21 times higher compared to commercially available Pt/C benchmarks. The strong chemical and mechanical interactions between the Pt and the octapod surface, along with pod-aided adhesion of the Pt/octapod network to the buckypaper, result in a long-term durability (>20 h) of the HER-activity in both media. These results experimentally prove that the exploitation of our network of branched nanocrystals hosting Pt particles can circumvent the durability issues of the catalysts while adopting either ultralow Pt loadings or benchmarking carbon-supported Pt nanocrystals. Our work opens up prospects for using porous networks made by branched nanocrystals as catalysts with ultralow amount of noble metals and controlled catalytic properties.
The ability to efficiently evolve hydrogen via electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution reaction (HER) can be easily achieved from water if a voltage above the thermodynamic potential of the HER is applied. Large overpotentials are energetically inefficient but can be lowered with expensive platinum based catalysts. Replacement of Pt with inexpensive, earth abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. Towards this end, promising HER characteristics have been reported using 2H (trigonal prismatic) XS2 (where X = Mo or W) nanoparticles with a high concentration of metallic edges as electrocatalysts. The key challenges for HER with XS2 are increasing the number and catalytic activity of active sites. Here we report atomically thin nanosheets of chemically exfoliated WS2 as efficient catalysts for hydrogen evolution with very low overpotentials. Atomic-resolution transmission electron microscopy and spectroscopy analyses indicate that enhanced electrocatalytic activity of WS2 is associated with high concentration of strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Density functional theory calculations reveal that the presence of strain in the 1T phase leads to an enhancement of the density of states at the Fermi level and increases the catalytic activity of the WS2 nanosheet. Our results suggest that chemically exfoliated WS2 nanosheets could be interesting catalysts for hydrogen evolution.
Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is a promising electrochemical energy conversion strategy. Ruthenium (Ru) is an efficient catalyst with a desirable cost for HER, however, the sluggish H2O dissociation process, due to the low H2O adsorption on its surface, currently hampers the performances of this catalyst in alkaline HER. Herein, we demonstrate that the H2O adsorption improves significantly by the construction of Ru-O-Mo sites. We prepared Ru/MoO2 catalysts with Ru-O-Mo sites through a facile thermal treatment process and assessed the creation of Ru-O-Mo interfaces by transmission electron microscope (TEM) and extended X-ray absorption fine structure (EXAFS). By using Fourier-transform infrared spectroscopy (FTIR) and H2O adsorption tests, we proved Ru-O-Mo sites have tenfold stronger H2O adsorption ability than that of Ru catalyst. The catalysts with Ru-O-Mo sites exhibited a state-of-the-art overpotential of 16 mV at 10 mA cm-2 in 1 M KOH electrolyte, demonstrating a threefold reduction than the previous bests of Ru (59 mV) and commercial Pt (31 mV) catalysts. We proved the stability of these performances over 40 hours without decline. These results could open a new path for designing efficient and stable catalysts.
In this work, we demonstrate that a well-established and facile ball milling approach using mixtures of commercial anatase nanoparticles and TiH2 introduces noble-metal-free photocatalytic H2 activity to titania. We characterize this synergistic effect in view of the nature of defects, state of hydroxylation, and investigate the effect on the energetics and kinetics of electronic states and the resulting H2 evolution performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا