Do you want to publish a course? Click here

KELT-25b and KELT-26b: A Hot Jupiter and a Substellar Companion Transiting Young A-stars Observed by TESS

139   0   0.0 ( 0 )
 Added by Romy Rodr\\'iguez
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discoveries of KELT-25b (TIC 65412605, TOI-626.01) and KELT-26b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A-stars. The transit signals were initially detected by the KELT survey, and subsequently confirmed by textit{TESS} photometry. KELT-25b is on a 4.40-day orbit around the V = 9.66 star CD-24 5016 ($T_{rm eff} = 8280^{+440}_{-180}$ K, $M_{star}$ = $2.18^{+0.12}_{-0.11}$ $M_{odot}$), while KELT-26b is on a 3.34-day orbit around the V = 9.95 star HD 134004 ($T_{rm eff}$ =$8640^{+500}_{-240}$ K, $M_{star}$ = $1.93^{+0.14}_{-0.16}$ $M_{odot}$), which is likely an Am star. We have confirmed the sub-stellar nature of both companions through detailed characterization of each system using ground-based and textit{TESS} photometry, radial velocity measurements, Doppler Tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of $R_{rm P}$ = $1.64^{+0.039}_{-0.043}$ $R_{rm J}$, and a 3-sigma upper limit on the companions mass of $sim64~M_{rm J}$. For KELT-26b, we infer a planetary mass and radius of $M_{rm P}$ = $1.41^{+0.43}_{-0.51}$ $M_{rm J}$ and $R_{rm P}$ = $1.940^{+0.060}_{-0.058}$ $R_{rm J}$. From Doppler Tomographic observations, we find KELT-26b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the textit{TESS} data. KELT-25b appears to be in a well-aligned, prograde orbit, and the system is likely a member of a cluster or moving group.



rate research

Read More

We present the discovery of KELT-22Ab, a hot Jupiter from the KELT-South survey. KELT-22Ab transits the moderately bright ($Vsim 11.1$) Sun-like G2V star TYC 7518-468-1. The planet has an orbital period of $P = 1.3866529 pm 0.0000027 $ days, a radius of $R_{P} = 1.285_{-0.071}^{+0.12}~R_{J}$, and a relatively large mass of $M_{P} = 3.47_{-0.14}^{+0.15}~ M_{J}$. The star has $R_{star} = 1.099_{-0.046}^{+0.079}~ R_{odot}$, $M_{star} = 1.092_{-0.041}^{+0.045}~ M_{odot}$, ${T_{rm eff},} = 5767_{-49}^{+50}~$ K, ${log{g_star}} = 4.393_{-0.060}^{+0.039}~$ (cgs), and [m/H] = $+0.259_{-0.083}^{+0.085}~$, and thus, other than its slightly super-solar metallicity, appears to be a near solar twin. Surprisingly, KELT-22A exhibits kinematics and a Galactic orbit that are somewhat atypical for thin disk stars. Nevertheless, the star is rotating quite rapidly for its estimated age, shows evidence of chromospheric activity, and is somewhat metal rich. Imaging reveals a slightly fainter companion to KELT-22A that is likely bound, with a projected separation of 6arcsec ($sim$1400 AU). In addition to the orbital motion caused by the transiting planet, we detect a possible linear trend in the radial velocity of KELT-22A suggesting the presence of another relatively nearby body that is perhaps non-stellar. KELT-22Ab is highly irradiated (as a consequence of the small semi-major axis of $a/R_{star} = 4.97$), and is mildly inflated. At such small separations, tidal forces become significant. The configuration of this system is optimal for measuring the rate of tidal dissipation within the host star. Our models predict that, due to tidal forces, the semi-major axis of KELT-22Ab is decreasing rapidly, and is thus predicted to spiral into the star within the next Gyr.
We report the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting a mildly evolved host star. We identified the initial transit signal in the KELT-North survey data and established the planetary nature of the companion through precise follow-up photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the $V = 10.64$ host, TYC 2619-1057-1, has $T_{rm eff} = 6278 pm 51$ K, $log{g_star} = 3.89^{+0.054}_{-0.051}$, and [Fe/H] = $0.19^{+0.083}_{-0.085}$, with an inferred mass $M_{star} = 1.59^{+0.071}_{-0.091} M_odot$ and radius $R_star = 2.37 pm 0.18 R_odot$. The planetary companion has $M_{rm P} = 0.95 pm 0.14 M_{rm J}$, $R_{rm P} = 1.79^{+0.18}_{-0.17} R_{rm J}$, $log{g_{rm P}} = 2.87^{+0.097}_{-0.098}$, and density $rho_{rm P} = 0.21^{+0.075}_{-0.054}$ g cm$^{-3}$, making it one of the most inflated giant planets known. The time of inferior conjunction in ${rm BJD_{TDB}}$ is $2457088.692055 pm 0.0009$ and the period is $P = 5.0316144 pm 0.0000306$ days. Despite the relatively large separation of $sim0.07$ AU implied by its $sim 5.03$-day orbital period, KELT-12b receives significant flux of $2.93^{+0.33}_{-0.30} times 10^9$ erg s$^{-1}$ cm$^{-2}$ from its host. We compare the radii and insolations of transiting gas-giant planets around hot ($T_{rm eff} geq 6250$ K) and cool stars, noting that the observed paucity of known transiting giants around hot stars with low insolation is likely due to selection effects. We underscore the significance of long-term ground-based monitoring of hot stars and space-based targeting of hot stars with the Transiting Exoplanet Survey Satellite (TESS) to search for inflated giants in longer-period orbits.
We report the discovery of KELT-3b, a moderately inflated transiting hot Jupiter with a mass of 1.477 (-0.067, +0.066) M_J, and radius of 1.345 +/- 0.072 R_J, with an orbital period of 2.7033904 +/- 0.000010 days. The host star, KELT-3, is a V=9.8 late F star with M_* = 1.278 (-0.061, +0.063) M_sun, R_* = 1.472 (-0.067, +0.065) R_sun, T_eff = 6306 (-49, +50) K, log(g) = 4.209 (-0.031, +0.033), and [Fe/H] = 0.044 (-0.082, +0.080), and has a likely proper motion companion. KELT-3b is the third transiting exoplanet discovered by the KELT survey, and is orbiting one of the 20 brightest known transiting planet host stars, making it a promising candidate for detailed characterization studies. Although we infer that KELT-3 is significantly evolved, a preliminary analysis of the stellar and orbital evolution of the system suggests that the planet has likely always received a level of incident flux above the empirically-identified threshold for radius inflation suggested by Demory & Seager (2011).
We announce the discovery of KELT-23Ab, a hot Jupiter transiting the relatively bright ($V=10.3$) star BD+66 911 (TYC 4187-996-1), and characterize the system using follow-up photometry and spectroscopy. A global fit to the system yields host-star properties of $T_{eff}=5900pm49 K$, $M_*=0.945^{+0.060}_{-0.054} M_{odot}$, $R_*=0.995pm0.015 R_{odot}$, $L_*=1.082^{+0.051}_{-0.048} L_{odot}$, log$g_{*}=4.418^{+0.026}_{-0.025}$ (cgs), and $left[{rm Fe}/{rm H}right]=-0.105pm0.077$. KELT-23Ab is a hot Jupiter with mass $M_P=0.938^{+0.045}_{-0.042} M_{rm J}$, radius $R_P=1.322pm0.025 R_{rm J}$, and density $rho_P=0.504^{+0.038}_{-0.035}$ g cm$^{-3}$. Intense insolation flux from the star has likely caused KELT-23Ab to become inflated. The time of inferior conjunction is $T_0=2458149.40776pm0.00091~rm {BJD_{TDB}}$ and the orbital period is $P=2.255353^{+0.000031}_{-0.000030}$ days. There is strong evidence that KELT-23A is a member of a long-period binary star system with a less luminous companion, and due to tidal interactions, the planet is likely to spiral into its host within roughly a Gyr. This system has one of the highest positive ecliptic latitudes of all transiting planet hosts known to date, placing it near the Transiting Planet Survey Satellite and James Webb Space Telescope continuous viewing zones. Thus we expect it to be an excellent candidate for long-term monitoring and follow-up with these facilities.
We present the discovery of the giant planet KELT-19Ab, which transits the moderately bright $(mathrm{V} sim 9.9)$ A8V star TYC 764-1494-1 with an orbital period of 4.61 days. We confirm the planetary nature of the companion via a combination of radial velocities, which limit the mass to $< 4.1,mathrm{M_J}$ $(3sigma)$, and a clear Doppler tomography signal, which indicates a retrograde projected spin-orbit misalignment of $lambda = -179.7^{+3.7}_{-3.8}$ degrees. Global modeling indicates that the $rm{T_{eff}} =7500 pm 110,mathrm{K}$ host star has $mathrm{M_*} = 1.62^{+0.25}_{-0.20},mathrm{M_odot}$ and $mathrm{R_*} = 1.83 pm 0.10,mathrm{R_odot}$. The planet has a radius of $mathrm{R_P}=1.91 pm 0.11,mathrm{R_J}$ and receives a stellar insolation flux of $sim 3.2times 10^{9},mathrm{erg,s^{-1},cm^{-2}}$, leading to an inferred equilibrium temperature of $rm{T_{EQ}} = sim 1935,rm{K}$ assuming zero albedo and complete heat redistribution. With a $vsin{I_*}=84.8pm 2.0,mathrm{km,s^{-1}}$, the host is relatively slowly rotating compared to other stars with similar effective temperatures, and it appears to be enhanced in metallic elements but deficient in calcium, suggesting that it is likely an Am star. KELT-19A would be the first detection of an Am host of a transiting planet of which we are aware. Adaptive optics observations of the system reveal the existence of a companion with late G9V/early K1V spectral type at a projected separation of $approx 160,mathrm{AU}$. Radial velocity measurements indicate that this companion is bound. Most Am stars are known to have stellar companions, which are often invoked to explain the relatively slow rotation of the primary. In this case, the stellar companion is unlikely to have caused the tidal braking of the primary. However, it may have emplaced the transiting planetary companion via the Kozai-Lidov mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا