Do you want to publish a course? Click here

Observations of a quasi-periodic pulsation in the coronal loop and microwave flux during a solar preflare phase

66   0   0.0 ( 0 )
 Added by Dong Li Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a quasi-periodic pulsation (QPP) event simultaneously detected from the spatial displacements of coronal loop at both EUV images and microwave emission during the preflare phase of a C1.1 flare on 2016 March 23. Using the motion magnification technique, a low-amplitude transverse oscillation with the growing period is discovered in a diffuse coronal loop in Atmospheric Imaging Assembly (AIA) image sequences at wavelength of 171 A, and the initial oscillation period is estimated to be ~397 s with a slow growth rate of 0.045. At the same time, a QPP with growing periods from roughly 300 s to nearly 500 s is discovered in the microwave flux in the same active region. Based on the imaging observations measured at EUV wavelengths by the AIA and at microwave 17 GHz by Nobeyama Radioheliograph, the diffuse coronal loop and the microwave radiation source are found to be connected through a hot loop seen in AIA images at wavelength of 94 A. The growing period of the QPP should be related to the modulation of LRC-circuit oscillating process in a current-carrying plasma loop. The existence of electric currents may imply the non-potentialities in the source region during the preflare phase.



rate research

Read More

72 - Dong Li , Lei Lu , Zongjun Ning 2020
We investigated the quasi-periodic pulsation (QPP) in Lyman-alpha, X-ray and extreme-ultraviolet (EUV) emissions during two solar flares, i.e., an X-class (SOL2012-01-27T) and a C-class (SOL2016-02-08T). The full-disk Lyman-alpha and X-Ray flux during these solar flares were recorded by the EUV Sensor and X-Ray Sensor on board the Geostationary Operational Environmental Satellite. The {deg}are regions were located from the EUV images measured by the Atmospheric Imaging Assembly. The QPP could be identified as a series of regular and periodic peaks in the light curves, and its quasi-periodicity was determined from the global wavelet and Fourier power spectra. A quasi-periodicity at about 3 minutes is detected during the impulsive phase of the X-class flare, which could be explained as the acoustic wave in the chromosphere (e.g., Milligan et al. 2017). Interestingly, a quasi-periodicity at roughly 1 minute is discovered during the entire evolutionary phases of solar flares, including the precursor, impulsive, and gradual phases. This is the first report of 1-minute QPP in the Lyman-alpha emission during solar flares, in particular during the flare precursor. It may be interpreted as a self-oscillatory regime of the magnetic reconnection, such as magnetic dripping.
The preflare phase of the flare SOL2011-08-09T03:52 is unique in its long duration, its coverage by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph, and the presence of three well-developed soft X-ray (SXR) peaks. No hard X-rays (HXR) are observed in the preflare phase. Here we report that also no associated radio emission at 17 GHz was found despite the higher sensitivity of the radio instrument. The ratio between the SXR peaks and the upper limit of the radio peaks is larger by more than one order of magnitude compared to regular flares. The result suggests that the ratio between acceleration and heating in the preflare phase was different than in regular flares. Acceleration to relativistic energies, if any, occurred with lower efficiency.
Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in the flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both of QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares, such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. It was found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we will show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon with full of shocks and waves.
Employing Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we have presented coronal condensations caused by magnetic reconnection between a system of open and closed solar coronal loops. In this Letter, we report the quasi-periodic fast magnetoacoustic waves propagating away from the reconnection region upward across the higher-lying open loops during the reconnection process. On 2012 January 19, reconnection between the higher-lying open loops and lower-lying closed loops took place, and two sets of newly reconnected loops formed. Thereafter, cooling and condensations of coronal plasma occurred in the magnetic dip region of higher-lying open loops. During the reconnection process, disturbances originating from the reconnection region propagate upward across the magnetic dip region of higher-lying loops with the mean speed and mean speed amplitude of 200 and 30 km s$^{-1}$, respectively. The mean speed of the propagating disturbances decreases from $sim$230 km s$^{-1}$ to $sim$150 km s$^{-1}$ during the coronal condensation process, and then increases to $sim$220 km s$^{-1}$. This temporal evolution of the mean speed anti-correlates with the light curves of the AIA 131 and 304 AA~channels that show the cooling and condensation process of coronal plasma. Furthermore, the propagating disturbances appear quasi-periodically with a peak period of 4 minutes. Our results suggest that the disturbances represent the quasi-periodic fast propagating magnetoacoustic (QFPM) waves originating from the magnetic reconnection between coronal loops.
133 - D. Li , Z. J. Ning , 2015
We explore the Quasi-Periodic Pulsations (QPPs) in a solar flare observed by Fermi Gamma-ray Burst Monitor (GBM), Solar Dynamics Observatory (SDO), Solar Terrestrial Relations Observatory (STEREO), and Interface Region Imaging Spectrograph (IRIS) on 2014 September 10. QPPs are identified as the regular and periodic peaks on the rapidly-varying components, which are the light curves after removing the slowly-varying components. The QPPs display only three peaks at the beginning on the hard X-ray (HXR) emissions, but ten peaks on the chromospheric and coronal line emissions, and more than seven peaks (each peak is corresponding to a type III burst on the dynamic spectra) at the radio emissions. An uniform quasi-period about 4 minutes are detected among them. AIA imaging observations exhibit that the 4-min QPPs originate from the flare ribbon, and tend to appear on the ribbon front. IRIS spectral observations show that each peak of the QPPs tends to a broad line width and a red Doppler velocity at C I, O IV, Si IV, and Fe XXI lines. Our findings indicate that the QPPs are produced by the non-thermal electrons which are accelerated by the induced quasi-periodic magnetic reconnections in this flare.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا