Do you want to publish a course? Click here

Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares

99   0   0.0 ( 0 )
 Added by Shinsuke Takasao
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in the flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both of QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares, such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. It was found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we will show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon with full of shocks and waves.



rate research

Read More

65 - Dong Li , Ying Li , Lei Lu 2020
We report a quasi-periodic pulsation (QPP) event simultaneously detected from the spatial displacements of coronal loop at both EUV images and microwave emission during the preflare phase of a C1.1 flare on 2016 March 23. Using the motion magnification technique, a low-amplitude transverse oscillation with the growing period is discovered in a diffuse coronal loop in Atmospheric Imaging Assembly (AIA) image sequences at wavelength of 171 A, and the initial oscillation period is estimated to be ~397 s with a slow growth rate of 0.045. At the same time, a QPP with growing periods from roughly 300 s to nearly 500 s is discovered in the microwave flux in the same active region. Based on the imaging observations measured at EUV wavelengths by the AIA and at microwave 17 GHz by Nobeyama Radioheliograph, the diffuse coronal loop and the microwave radiation source are found to be connected through a hot loop seen in AIA images at wavelength of 94 A. The growing period of the QPP should be related to the modulation of LRC-circuit oscillating process in a current-carrying plasma loop. The existence of electric currents may imply the non-potentialities in the source region during the preflare phase.
We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lunquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop-top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent due to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jet collide with the flux rope bottom or flare loop-top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jet is bent (rather than decelerated) in horizontal direction, resulting in supersonic back-flows. The structure becomes unstable, and quasi-periodic oscillation of supersonic back-flows appear at locally confined high-beta region at both the flux rope bottom and flare loop-top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons and light curves, with corresponding dynamical structures found in our simulation.
72 - Dong Li , Lei Lu , Zongjun Ning 2020
We investigated the quasi-periodic pulsation (QPP) in Lyman-alpha, X-ray and extreme-ultraviolet (EUV) emissions during two solar flares, i.e., an X-class (SOL2012-01-27T) and a C-class (SOL2016-02-08T). The full-disk Lyman-alpha and X-Ray flux during these solar flares were recorded by the EUV Sensor and X-Ray Sensor on board the Geostationary Operational Environmental Satellite. The {deg}are regions were located from the EUV images measured by the Atmospheric Imaging Assembly. The QPP could be identified as a series of regular and periodic peaks in the light curves, and its quasi-periodicity was determined from the global wavelet and Fourier power spectra. A quasi-periodicity at about 3 minutes is detected during the impulsive phase of the X-class flare, which could be explained as the acoustic wave in the chromosphere (e.g., Milligan et al. 2017). Interestingly, a quasi-periodicity at roughly 1 minute is discovered during the entire evolutionary phases of solar flares, including the precursor, impulsive, and gradual phases. This is the first report of 1-minute QPP in the Lyman-alpha emission during solar flares, in particular during the flare precursor. It may be interpreted as a self-oscillatory regime of the magnetic reconnection, such as magnetic dripping.
126 - Lei Lu , Dong Li , Zongjun Ning 2021
We report quasi-periodic pulsations (QPPs) with double periods during three solar flares (viz. SOL2011-Feb-15T01:44, SOL2011-Sep-25T04:31, SOL2012-May-17T01:25). The flare QPPs were observed from light curves in Ly$alpha$, hard X-ray (HXR) and microwave emissions, with the Ly$alpha$ emission recorded by the Geostationary Operational Environmental Satellite, the HXR emission recorded by the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Fermi Gamma-ray Burst Monitor, and the microwave emission recorded by the Nobeyama Radio Polarimeters and Radioheliograph. By using the Markov chain Monte Carlo (MCMC) method, QPPs with double periods of about two minutes and one minute were first found in the Ly$alpha$ emission. Then using the same method, a QPP with nearly the same period of about two minutes was also found in HXR and microwave emissions. Considering the possible common origin (nonthermal electrons) between Ly$alpha$ and HXR/microwave emission, we suggest that the two-minute QPP results from the periodic acceleration of nonthermal electrons during magnetic reconnections. The ratio between the double periods in the Ly$alpha$ emission was found to be close to two, which is consistent with the theoretical expectation between the fundamental and harmonic modes. However, we cannot rule out other possible driving mechanisms for the one-minute QPPs in HXR/microwave emissions due to their relatively large deviations.
Small amplitude quasi-periodic pulsations (QPPs) detected in soft X-ray emission are commonplace in many flares. To date, the underpinning processes resulting in the QPPs are unknown. In this paper, we attempt to constrain the prevalence of textit{stationary} QPPs in the largest statistical study to date, including a study of the relationship of QPP periods to the properties of the flaring active region, flare ribbons, and CME affiliation. We build upon the work of cite{inglis2016} and use a model comparison test to search for significant power in the Fourier spectra of lightcurves of the GOES 1--8~AA channel. We analyze all X-, M- and C- class flares of the past solar cycle, a total of 5519 flares, and search for periodicity in the 6-300~s timescale range. Approximately 46% of X-class, 29% of M-class and 7% of C-class flares show evidence of stationary QPPs, with periods that follow a log-normal distribution peaked at 20~s. The QPP periods were found to be independent of flare magnitude, however a positive correlation was found between QPP period and flare duration. No dependence of the QPP periods to the global active region properties was identified. A positive correlation was found between QPPs and ribbon properties including unsigned magnetic flux, ribbon area and ribbon separation distance. We found that both flares with and without an associated CME can host QPPs. Furthermore, we demonstrate that for X- and M- class flares, decay phase QPPs have statistically longer periods than impulsive phase QPPs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا