No Arabic abstract
The magnetar SGR J1745-2900 discovered at parsecs distance from the Milky Way central black hole, Sagittarius A*, represents the closest pulsar to a supermassive black hole ever detected. Furthermore, its intriguing radio emission has been used to study the environment of the black hole, as well as to derive a precise position and proper motion for this object. The discovery of SGR J1745-2900 has opened interesting debates about the number, age and nature of pulsars expected in the Galactic center region. In this work, we present extensive X-ray monitoring of the outburst of SGR J1745-2900 using the Chandra X-ray Observatory, the only instrument with the spatial resolution to distinguish the magnetar from the supermassive black hole (2.4 angular distance). It was monitored from its outburst onset in April 2013 until August 2019, collecting more than fifty Chandra observations for a total of more than 2.3 Ms of data. Soon after the outburst onset, the magnetar emission settled onto a purely thermal emission state that cooled from a temperature of about 0.9 to 0.6 keV over 6 years. The pulsar timing properties showed at least two changes in the period derivative, increasing by a factor of about 4 during the outburst decay. We find that the long-term properties of this outburst challenge current models for the magnetar outbursts.
We report on 3.5 years of Chandra monitoring of the Galactic Centre magnetar SGR J1745-2900 since its outburst onset in April 2013. The magnetar spin-down has shown at least two episodes of period derivative increases so far, and it has slowed down regularly in the past year or so. We observed a slightly increasing trend in the time evolution of the pulsed fraction, up to about 55 per cent in the most recent observations. SGR J1745-2900 has not reached the quiescent level yet, and so far the overall outburst evolution can be interpreted in terms of a cooling hot region on the star surface. We discuss possible scenarios, showing in particular how the presence of a shrinking hot spot in this source is hardly reconcilable with internal crustal cooling and favors the untwisting bundle model for this outburst. Moreover, we also show how the emission from a single uniform hot spot is incompatible with the observed pulsed fraction evolution for any pair of viewing angles, suggesting an anisotropic emission pattern.
We report on multi-frequency, wideband radio observations of the Galactic Center magnetar (SGR 1745$-$2900) with the Green Bank Telescope for $sim$100 days immediately following its initial X-ray outburst in April 2013. We made multiple simultaneous observations at 1.5, 2.0, and 8.9 GHz, allowing us to examine the magnetars flux evolution, radio spectrum, and interstellar medium parameters (such as the dispersion measure (DM), the scattering timescale and its index). During two epochs, we have simultaneous observations from the Chandra X-ray Observatory, which permitted the absolute alignment of the radio and X-ray profiles. As with the two other radio magnetars with published alignments, the radio profile lies within the broad peak of the X-ray profile, preceding the X-ray profile maximum by $sim$0.2 rotations. We also find that the radio spectral index $gamma$ is significantly negative between $sim$2 and 9 GHz; during the final $sim$30 days of our observations $gamma sim -1.4$, which is typical of canonical pulsars. The radio flux has not decreased during this outburst, whereas the long-term trends in the other radio magnetars show concomitant fading of the radio and X-ray fluxes. Finally, our wideband measurements of the DMs taken in adjacent frequency bands in tandem are stochastically inconsistent with one another. Based on recent theoretical predictions, we consider the possibility that the dispersion measure is frequency-dependent. Despite having several properties in common with the other radio magnetars, such as $L_{textrm{X,qui}}/L_{textrm{rot}} lesssim 1$, an increase in the radio flux during the X-ray flux decay has not been observed thus far in other systems.
We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary (HMXB) pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals (TOAs) analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipses or an ionized high-density shadow wind near the companions surface. Finally, we propose that an outflow driven by the radiation pressure from day ~10 played an important role in the X-ray/optical evolution of the outburst.
We present the earliest X-ray observations of the 2018 outburst of XTE J1810-197, the first outburst since its 2003 discovery as the prototypical transient and radio-emitting anomalous X-ray pulsar (AXP). The Monitor of All-sky X-ray Image (MAXI) detected XTE J1810-197 immediately after a November 20-26 visibility gap, contemporaneous with its reactivation as a radio pulsar, first observed on December 8. On December 13 the Nuclear Spectroscopic Telescope Array (NUSTAR) detected X-ray emission up to at least 30 keV, with a spectrum well-characterized by a blackbody plus power-law model with temperature kT = 0.74+/-0.02 keV and photon index Gamma = 4.4+/-0.2 or by a two-blackbody model with kT = 0.59+/-0.04 keV and kT = 1.0+/-0.1 keV, both including an additional power-law component to account for emission above 10 keV, with Gamma_h = -0.2+/-1.5 and Gamma_h = 1.5+/-0.5, respectively. The latter index is consistent with hard X-ray flux reported for the non-transient magnetars. In the 2-10 keV bandpass, the absorbed flux is 2E-10 erg/s/cm^2, a factor of 2 greater than the maximum flux extrapolated for the 2003 outburst. The peak of the sinusoidal X-ray pulse lags the radio pulse by approx. 0.13 cycles, consistent with their phase relationship during the 2003 outburst. This suggests a stable geometry in which radio emission originates on magnetic field lines containing currents that heat a spot on the neutron star surface. However, a measured energy-dependent phase shift of the pulsed X-rays suggests that all X-ray emitting regions are not precisely co-aligned.
Previous X-ray observations toward the Nuclear Star Cluster (NSC) at the Galactic center have discovered thousands of point sources, most of which were believed to be cataclysmic variables (CVs), i.e., a white dwarf (WD) accreting from a low-mass companion. However, the population properties of these CVs remain unclear, which otherwise contain important information about the evolutionary history of the NSC. In this work we utilize ultradeep archival textit{Chandra} observations to study the spectral properties of the NSC CVs, in close comparison with those in the Solar vicinity. We find that the NSC CVs have strong Fe XXV and Fe XXVI lines (both of which show equivalent widths $sim200-300$ eV), indicating metal-rich companions. Moreover, their Fe XXVI to Fe XXV line flux ratio is used to diagnose the characteristic white dwarf mass ($M_{rm WD}$) of NSC CVs. The results show that the CVs with $L_{rm 2-10 keV}>6times10^{31}$ erg s$^{-1}$ have a mean $M_{rm WD}$ of $sim0.6/1.0,M_{odot}$ if they are magnetic/non-magnetic CVs; while those with $L_{rm 2-10 keV}$ between $1-6times10^{31}$ erg s$^{-1}$ have a mean $M_{rm WD}$ of $sim0.8/1.2,M_{odot}$ if they are magnetic/non-magnetic CVs. All these textit{Chandra}-detected CVs collectively contribute $sim$30-50% of the unresolved 20-40 keV X-ray emission from the NSC. The CV population with massive (i.e., $M_{rm WD}sim1.2M_{odot}$) WDs have not been observed in the Solar vicinity or the Galactic bulge, and they might have been formed via dynamical encounters in the NSC.