No Arabic abstract
The ongoing COVID-19 global pandemic is affecting every facet of human lives (e.g., public health, education, economy, transportation, and the environment). This novel pandemic and citywide implemented lockdown measures are affecting virus transmission, peoples travel patterns, and air quality. Many studies have been conducted to predict the COVID-19 diffusion, assess the impacts of the pandemic on human mobility and air quality, and assess the impacts of lockdown measures on viral spread with a range of Machine Learning (ML) techniques. This review study aims to analyze results from past research to understand the interactions among the COVID-19 pandemic, lockdown measures, human mobility, and air quality. The critical review of prior studies indicates that urban form, peoples socioeconomic and physical conditions, social cohesion, and social distancing measures significantly affect human mobility and COVID-19 transmission. during the COVID-19 pandemic, many people are inclined to use private transportation for necessary travel purposes to mitigate coronavirus-related health problems. This review study also noticed that COVID-19 related lockdown measures significantly improve air quality by reducing the concentration of air pollutants, which in turn improves the COVID-19 situation by reducing respiratory-related sickness and deaths of people. It is argued that ML is a powerful, effective, and robust analytic paradigm to handle complex and wicked problems such as a global pandemic. This study also discusses policy implications, which will be helpful for policymakers to take prompt actions to moderate the severity of the pandemic and improve urban environments by adopting data-driven analytic methods.
The impact of the ongoing COVID-19 pandemic is being felt in all spheres of our lives -- cutting across the boundaries of nation, wealth, religions or race. From the time of the first detection of infection among the public, the virus spread though almost all the countries in the world in a short period of time. With humans as the carrier of the virus, the spreading process necessarily depends on the their mobility after being infected. Not only in the primary spreading process, but also in the subsequent spreading of the mutant variants, human mobility plays a central role in the dynamics. Therefore, on one hand travel restrictions of varying degree were imposed and are still being imposed, by various countries both nationally and internationally. On the other hand, these restrictions have severe fall outs in businesses and livelihood in general. Therefore, it is an optimization process, exercised on a global scale, with multiple changing variables. Here we review the techniques and their effects on optimization or proposed optimizations of human mobility in different scales, carried out by data driven, machine learning and model approaches.
Background: The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this Infodemic requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. Objective: We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. Methods: We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. Results: A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot Satya increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. Conclusion: We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation.
Most work to date on mitigating the COVID-19 pandemic is focused urgently on biomedicine and epidemiology. Yet, pandemic-related policy decisions cannot be made on health information alone. Decisions need to consider the broader impacts on people and their needs. Quantifying human needs across the population is challenging as it requires high geo-temporal granularity, high coverage across the population, and appropriate adjustment for seasonal and other external effects. Here, we propose a computational methodology, building on Maslows hierarchy of needs, that can capture a holistic view of relative changes in needs following the pandemic through a difference-in-differences approach that corrects for seasonality and volume variations. We apply this approach to characterize changes in human needs across physiological, socioeconomic, and psychological realms in the US, based on more than 35 billion search interactions spanning over 36,000 ZIP codes over a period of 14 months. The analyses reveal that the expression of basic human needs has increased exponentially while higher-level aspirations declined during the pandemic in comparison to the pre-pandemic period. In exploring the timing and variations in statewide policies, we find that the durations of shelter-in-place mandates have influenced social and emotional needs significantly. We demonstrate that potential barriers to addressing critical needs, such as support for unemployment and domestic violence, can be identified through web search interactions. Our approach and results suggest that population-scale monitoring of shifts in human needs can inform policies and recovery efforts for current and anticipated needs.
In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions to the virus and the non-pharmaceutical interventions should be of great help to fight COVID-19 in a strategic way. We aim to provide tangible evidence of the human mobility trends by comparing the day-by-day variations across the U.S. Large-scale public mobility at an aggregated level is observed by leveraging mobile device location data and the measures related to social distancing. Our study captures spatial and temporal heterogeneity as well as the sociodemographic variations regarding the pandemic propagation and the non-pharmaceutical interventions. All mobility metrics adapted capture decreased public movements after the national emergency declaration. The population staying home has increased in all states and becomes more stable after the stay-at-home order with a smaller range of fluctuation. There exists overall mobility heterogeneity between the income or population density groups. The public had been taking active responses, voluntarily staying home more, to the in-state confirmed cases while the stay-at-home orders stabilize the variations. The study suggests that the public mobility trends conform with the government message urging to stay home. We anticipate our data-driven analysis offers integrated perspectives and serves as evidence to raise public awareness and, consequently, reinforce the importance of social distancing while assisting policymakers.
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and the U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographical regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amendable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected peoples travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts varied substantially among states. The strong mobility recovering momentum is further fueled by the Black Lives Matter protests, potentially fostering the second wave of infections in the U.S.