Do you want to publish a course? Click here

Thermal charge carrier driven noise in transmissive semiconductor optics

373   0   0.0 ( 0 )
 Added by Florian Bruns
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several sources of noise limit the sensitivity of current gravitational wave detectors. Currently, dominant noise sources include quantum noise and thermal Brownian noise, but future detectors will also be limited by other thermal noise channels. In this paper we study a thermal noise source which is caused by spatial charge carrier density variations in semiconductor materials. We provide an analytical model for the understanding of charge carrier fluctuations under the presence of screening effects and show that charge carrier noise will not be a limiting noise source for third generation gravitational wave detectors.

rate research

Read More

139 - Z. Vernon , J.E. Sipe 2015
We present a detailed analysis of strongly driven spontaneous four-wave mixing in a lossy integrated microring resonator side-coupled to a channel waveguide. A nonperturbative, analytic solution within the undepleted pump approximation is developed for a cw pump input of arbitrary intensity. In the strongly driven regime self- and cross-phase modulation, as well as multi-pair generation, lead to a rich variety of power-dependent effects; the results are markedly different than in the low power limit. The photon pair generation rate, single photon spectrum, and joint spectral intensity (JSI) distribution are calculated. Splitting of the generated single photon spectrum into a doublet structure associated with both pump detuning and cross-phase modulation is predicted, as well as substantial narrowing of the generated signal and idler bandwidths associated with the onset of optical parametric oscillation at intermediate powers. Both the correlated and uncorrelated contributions to the JSI are calculated, and for sufficient powers the uncorrelated part of the JSI is found to form a quadruplet structure. The pump detuning is found to play a crucial role in all of these phenomena, and a critical detuning is identified which divides the system behaviour into distinct regimes, as well as an optimal detuning strategy which preserves many of the low-power characteristics of the generated photons for arbitrary input power.
We investigate the effect of hypersonic (> 1 GHz) acoustic phonon wavepackets on electron transport in a semiconductor superlattice. Our quantum mechanical simulations demonstrate that a GHz train of picosecond deformation strain pulses propagating through a superlattice can generate current oscillations whose frequency is several times higher than that of the strain pulse train. The shape and polarity of the calculated current pulses agree well with experimentally measured electric signals. The calculations also explain and accurately reproduce the measured variation of the induced current pulse magnitude with the strain pulse amplitude and applied bias voltage. Our results open a route to developing acoustically-driven semiconductor superlattices as sources of millimetre and sub-millimetre electromagnetic waves.
Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to carrier recovery harnessing large-gain stimulated Brillouin scattering (SBS) on a photonic chip for up to 116.82 Gbit/sec self-coherent optical signals, eliminating the need for a separate LO. In contrast to SBS processing on-fiber, our solution provides phase and polarization stability while the narrow SBS linewidth allows for a record-breaking small guardband of ~265 MHz, resulting in higher spectral-efficiency than benchmark self-coherent schemes. This approach reveals comparable performance to state-of-the-art coherent optical receivers without requiring advanced DSP. Our demonstration develops a low-noise and frequency-preserving filter that synchronously regenerates a low-power narrowband optical tone that could relax the requirements on very-high-order modulation signaling and be useful in long-baseline interferometry for precision optical timing or reconstructing a reference tone for quantum-state measurements.
Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers in long-haul and intra-data-center links and enabling new applications such as solid-state LiDAR (Light Detection and Ranging) and optical machine learning. Further improving the density and performance of silicon photonics, however, has been challenging, due to the large size and limited performance of traditional semi-analytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has until now faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices - a spatial mode multiplexer, wavelength demultiplexer, 50-50 directional coupler, and 3-way power splitter - made successfully in a commercial silicon photonics foundry. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.
The quantum bits (qubits) on which superconducting quantum computers are based have energy scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz domain is too low to allow transmission through the noisy room-temperature environment, where the signal would be lost in thermal noise. Optical photons, on the other hand, have much higher energies, and signals can be detected using highly efficient single-photon detectors. Transduction from microwave to optical frequencies is therefore a potential enabling technology for quantum devices. However, in such a device the optical pump can be a source of thermal noise and thus degrade the fidelity; the similarity of input microwave state to the output optical state. In order to investigate the magnitude of this effect we model the sub-Kelvin thermal behavior of an electro-optic transducer based on a lithium niobate whispering gallery mode resonator. We find that there is an optimum power level for a continuous pump, whilst pulsed operation of the pump increases the fidelity of the conversion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا