Do you want to publish a course? Click here

Ultrafast strain-induced charge transport in semiconductor superlattices

229   0   0.0 ( 0 )
 Added by Ferian Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the effect of hypersonic (> 1 GHz) acoustic phonon wavepackets on electron transport in a semiconductor superlattice. Our quantum mechanical simulations demonstrate that a GHz train of picosecond deformation strain pulses propagating through a superlattice can generate current oscillations whose frequency is several times higher than that of the strain pulse train. The shape and polarity of the calculated current pulses agree well with experimentally measured electric signals. The calculations also explain and accurately reproduce the measured variation of the induced current pulse magnitude with the strain pulse amplitude and applied bias voltage. Our results open a route to developing acoustically-driven semiconductor superlattices as sources of millimetre and sub-millimetre electromagnetic waves.



rate research

Read More

The formation of exciton-polaritons allows the transport of energy over hundreds of nanometres at velocities up to 10^6 m s^-1 in organic semiconductors films in the absence of external cavity structures.
We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatio-temporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman micro-spectroscopy, which is used for in-situ verification of the chemical identity in the 100 - 2000 cm-1 spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy allowing for the study of ultrafast transport properties down to the nanometer length scale.
Van der Waals moire materials have emerged as a highly controllable platform to study the electronic correlation phenomena. In particular, robust correlated insulating states have recently been discovered at both integer and fractional filling factors of the semiconductor moire systems. Here, we reveal the thermodynamic properties of these states by measuring the gate capacitance of MoSe2/WS2 moire superlattices. We observe a series of incompressible states for filling factor 0 - 8 and anomalously large capacitance (nearly 60% above the devices geometrical capacitance) in the intervening compressible regions. The anomalously large capacitance is most pronounced at small filling factor, below the melting temperature of the charge-ordered states, and for small sample-gate separation. It is a manifestation of the device-geometry-dependent Coulomb interaction between electrons and phase mixing of the charge-ordered states. We have further extracted the thermodynamic gap of the correlated insulating states and the entropy of the capacitive device. The results not only establish capacitance as a powerful probe of the correlated states in semiconductor moire systems, but also demonstrate control of the extended Coulomb interaction in these materials via sample-gate coupling.
Nonlinear charge transport in strongly coupled semiconductor superlattices is described by Wigner-Poisson kinetic equations involving one or two minibands. Electron-electron collisions are treated within the Hartree approximation whereas other inelastic collisions are described by a modified BGK (Bhatnaghar-Gross-Krook) model. The hyperbolic limit is such that the collision frequencies are of the same order as the Bloch frequencies due to the electric field and the corresponding terms in the kinetic equation are dominant. In this limit, spatially nonlocal drift-diffusion balance equations for the miniband populations and the electric field are derived by means of the Chapman-Enskog perturbation technique. For a lateral superlattice with spin-orbit interaction, electrons with spin up or down have different energies and their corresponding drift-diffusion equations can be used to calculate spin-polarized currents and electron spin polarization. Numerical solutions show stable self-sustained oscillations of the current and the spin polarization through a voltage biased lateral superlattice thereby providing an example of superlattice spin oscillator.
In this letter, the transient behavior of a ferroelectric (FE) metal-oxide-semiconductor (MOS) capacitor is theoretically investigated with a series resistor. It is shown that compared to a conventional high-k dielectric MOS capacitor, a significant inversion charge-boost can be achieved by a FE MOS capacitor due to a steep transient subthreshold swing (SS) driven by the free charge-polarization mismatch. It is also shown that the observation of steep transient SS significantly depends on the viscosity coefficient under Landaus mean field theory, in general representing the average FE time response associated with domain nucleation and propagation. Therefore, this letter not only establishes a theoretical framework that describes the physical origin behind the inversion charge-boost in a FE MOS capacitor, but also shows that the key feature of depolarization effect on a FE MOS capacitor should be the inversion-charge boost, rather than the steep SS (e.g., sub-60mV/dec at room temperature), which cannot be experimentally observed as the measurement time is much longer than the FE response. Finally, we outlines the required material targets for the FE response in field-effect transistors to be applicable for next-generation high-speed and low-power digital switches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا