Do you want to publish a course? Click here

Structure and rheology of suspensions of spherical strain-hardening capsules

91   0   0.0 ( 0 )
 Added by Othmane Aouane
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the rheology of strain-hardening spherical capsules, from the dilute to the concentrated regime under a confined shear flow using three-dimensional numerical simulations. We consider the effect of capillary number, volume fraction and membrane inextensibility on the particle deformation and on the effective suspension viscosity and normal stress differences of the suspension. The suspension displays a shear-thinning behaviour which is a characteristic of soft particles such as emulsion droplets, vesicles, strain-softening capsules, and red blood cells. We find that the membrane inextensibility plays a significant role on the rheology and can almost suppress the shear-thinning. For concentrated suspensions a non-monotonic dependence of the normal stress differences on the membrane inextensibility is observed, reflecting a similar behaviour in the particle shape. The effective suspension viscosity, instead, grows and eventually saturates, for very large inextensibilities, approaching the solid particle limit. In essence, our results reveal that strain-hardening capsules share rheological features with both soft and solid particles depending on the ratio of the area dilatation to shear elastic modulus. Furthermore, the suspension viscosity exhibits a universal behaviour for the parameter space defined by the capillary number and the membrane inextensibility, when introducing the particle geometrical changes at the steady-state in the definition of the volume fraction.

rate research

Read More

A concentrated, vertical monolayer of identical spherical squirmers, which may be bottom-heavy, and which are subjected to a linear shear flow, is modelled computationally by two different methods: Stokesian dynamics, and a lubrication-theory-based method. Inertia is negligible. The aim is to compute the effective shear viscosity and, where possible, the normal stress differences as functions of the areal fraction of spheres $phi$, the squirming parameter $beta$ (proportional to the ratio of a squirmers active stresslet to its swimming speed), the ratio $Sq$ of swimming speed to a typical speed of the shear flow, the bottom-heaviness parameter $G_{bh}$, the angle $alpha$ that the shear flow makes with the horizontal, and two parameters that define the repulsive force that is required computationally to prevent the squirmers from overlapping when their distance apart is less than a critical value $epsilon a$, where $epsilon$ is very small and $a$ is the sphere radius. The Stokesian dynamics method allows the rheological quantities to be computed for values of $phi$ up to $0.75$; the lubrication-theory method can be used for $phi> 0.5$. A major finding of this work is that, despite very different assumptions, the two methods of computation give overlapping results for viscosity as a function of $phi$ in the range $0.5 < phi < 0.75$. This suggests that lubrication theory, based on near-field interactions alone, contains most of the relevant physics, and that taking account of interactions with more distant particles than the nearest is not essential to describe the dominant physics.
The mechanical deformability of single cells is an important indicator for various diseases such as cancer, blood diseases and inflammation. Lab-on-a-chip devices allow to separate such cells from healthy cells using hydrodynamic forces. We perform hydrodynamic simulations based on the lattice-Boltzmann method and study the behavior of an elastic capsule in a microfluidic channel flow in the inertial regime. While inertial lift forces drive the capsule away from the channel center, its deformability favors migration in the opposite direction. Balancing both migration mechanisms, a deformable capsule assembles at a specific equilibrium distance depending on its size and deformability. We find that this equilibrium distance is nearly independent of the channel Reynolds number and falls on a single master curve when plotted versus the Laplace number. We identify a similar master curve for varying particle radius. In contrast, the actual deformation of a capsule strongly depends on the Reynolds number. The lift-force profiles behave in a similar manner as those for rigid particles. Using the Saffman effect, the capsules equilibrium position can be controlled by an external force along the channel axis. While rigid particles move to the center when slowed down, very soft capsules show the opposite behavior. Interestingly, for a specific control force particles are focused on the same equilibrium position independent of their deformability.
The dynamics of an adhesive two-dimensional vesicle doublet under various flow conditions is investigated numerically using a high-order, adaptive-in-time boundary integral method. In a quiescent flow, two nearby vesicles move slowly towards each other under the adhesive potential, pushing out fluid between them to form a vesicle doublet at equilibrium. A lubrication analysis on such draining of a thin film gives the dependencies of draining time on adhesion strength and separation distance that are in good agreement with numerical results. In a planar extensional flow we find a stable vesicle doublet forms only when two vesicles collide head-on around the stagnation point. In a microfluid trap where the stagnation of an extensional flow is dynamically placed in the middle of a vesicle doublet through an active control loop, novel dynamics of a vesicle doublet are observed. Numerical simulations show that there exists a critical extensional flow rate above which adhesive interaction is overcome by the diverging stream, thus providing a simple method to measure the adhesion strength between two vesicle membranes. In a planar shear flow, numerical simulations reveal that a vesicle doublet may form provided that the adhesion strength is sufficiently large at a given vesicle reduced area. Once a doublet is formed, its oscillatory dynamics is found to depend on the adhesion strength and their reduced area. Furthermore the effective shear viscosity of a dilute suspension of vesicle doublets is found to be a function of the reduced area. Results from these numerical studies and analysis shed light on the hydrodynamic and rheological consequences of adhesive interactions between vesicles in a viscous fluid.
A cutting-edge software is presented to tackle the Newton-Euler equations governing the dynamics of granular flows and dense suspensions in Newtonian fluids. In particular, we propose an implementation of a fixed-radius near neighbours search based on an efficient counting sort algorithm with an improved symmetric search. The adopted search method drastically reduces the computational cost and allows an efficient parallelisation even on a single node through the multi-threading paradigm. Emphasis is also given to the memory efficiency of the code since the history of the contacts among particles has to be traced to model the frictional contributions, when dealing with granular flows of rheological interest that consider non-smooth interacting particles. An effective procedure based on an estimate of the maximum number of the smallest particles surrounding the largest one (given the radii distribution) and a sort applied only to the surrounding particles only is implemented, allowing us to effectively tackle the rheology of non-monodispersed particles with high size-ratio in large domains. Finally, we present validations and verification of the numerical procedure, by comparing with previous simulations and experiments, and present new software capabilities.
105 - Eric Sultan 2010
We show that simulations of polymer rheology at a fluctuating mesoscopic scale and at the macroscopic scale where flow instabilities occur can be achieved at the same time with dissipative particle dynamics (DPD) technique.} We model the visco-elasticity of polymer liquids by introducing a finite fraction of dumbbells in the standard DPD fluid. The stretching and tumbling statistics of these dumbbells is in agreement with what is known for isolated polymers in shear flows. At the same time, the model exhibits behaviour reminiscent of drag reduction in the turbulent state: as the polymer fraction increases, the onset of turbulence in plane Couette flow is pushed to higher Reynolds numbers. The method opens up the possibility to model nontrivial rheological conditions with ensuing coarse grained polymer statistics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا