Do you want to publish a course? Click here

Rheology of a concentrated suspension of spherical squirmers: monolayer in simple shear flow

98   0   0.0 ( 0 )
 Added by Douglas Brumley
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A concentrated, vertical monolayer of identical spherical squirmers, which may be bottom-heavy, and which are subjected to a linear shear flow, is modelled computationally by two different methods: Stokesian dynamics, and a lubrication-theory-based method. Inertia is negligible. The aim is to compute the effective shear viscosity and, where possible, the normal stress differences as functions of the areal fraction of spheres $phi$, the squirming parameter $beta$ (proportional to the ratio of a squirmers active stresslet to its swimming speed), the ratio $Sq$ of swimming speed to a typical speed of the shear flow, the bottom-heaviness parameter $G_{bh}$, the angle $alpha$ that the shear flow makes with the horizontal, and two parameters that define the repulsive force that is required computationally to prevent the squirmers from overlapping when their distance apart is less than a critical value $epsilon a$, where $epsilon$ is very small and $a$ is the sphere radius. The Stokesian dynamics method allows the rheological quantities to be computed for values of $phi$ up to $0.75$; the lubrication-theory method can be used for $phi> 0.5$. A major finding of this work is that, despite very different assumptions, the two methods of computation give overlapping results for viscosity as a function of $phi$ in the range $0.5 < phi < 0.75$. This suggests that lubrication theory, based on near-field interactions alone, contains most of the relevant physics, and that taking account of interactions with more distant particles than the nearest is not essential to describe the dominant physics.



rate research

Read More

The dynamics of an adhesive two-dimensional vesicle doublet under various flow conditions is investigated numerically using a high-order, adaptive-in-time boundary integral method. In a quiescent flow, two nearby vesicles move slowly towards each other under the adhesive potential, pushing out fluid between them to form a vesicle doublet at equilibrium. A lubrication analysis on such draining of a thin film gives the dependencies of draining time on adhesion strength and separation distance that are in good agreement with numerical results. In a planar extensional flow we find a stable vesicle doublet forms only when two vesicles collide head-on around the stagnation point. In a microfluid trap where the stagnation of an extensional flow is dynamically placed in the middle of a vesicle doublet through an active control loop, novel dynamics of a vesicle doublet are observed. Numerical simulations show that there exists a critical extensional flow rate above which adhesive interaction is overcome by the diverging stream, thus providing a simple method to measure the adhesion strength between two vesicle membranes. In a planar shear flow, numerical simulations reveal that a vesicle doublet may form provided that the adhesion strength is sufficiently large at a given vesicle reduced area. Once a doublet is formed, its oscillatory dynamics is found to depend on the adhesion strength and their reduced area. Furthermore the effective shear viscosity of a dilute suspension of vesicle doublets is found to be a function of the reduced area. Results from these numerical studies and analysis shed light on the hydrodynamic and rheological consequences of adhesive interactions between vesicles in a viscous fluid.
To understand the behavior of composite fluid particles such as nucleated cells and double-emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric particle-droplet configuration, we numerically explore other eccentric and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf bifurcations. We present the loci of these solutions around the codimenstion-two point. We adopt a dynamical system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet interaction which gives rise to these bifurcations.
We investigate the rheology of strain-hardening spherical capsules, from the dilute to the concentrated regime under a confined shear flow using three-dimensional numerical simulations. We consider the effect of capillary number, volume fraction and membrane inextensibility on the particle deformation and on the effective suspension viscosity and normal stress differences of the suspension. The suspension displays a shear-thinning behaviour which is a characteristic of soft particles such as emulsion droplets, vesicles, strain-softening capsules, and red blood cells. We find that the membrane inextensibility plays a significant role on the rheology and can almost suppress the shear-thinning. For concentrated suspensions a non-monotonic dependence of the normal stress differences on the membrane inextensibility is observed, reflecting a similar behaviour in the particle shape. The effective suspension viscosity, instead, grows and eventually saturates, for very large inextensibilities, approaching the solid particle limit. In essence, our results reveal that strain-hardening capsules share rheological features with both soft and solid particles depending on the ratio of the area dilatation to shear elastic modulus. Furthermore, the suspension viscosity exhibits a universal behaviour for the parameter space defined by the capillary number and the membrane inextensibility, when introducing the particle geometrical changes at the steady-state in the definition of the volume fraction.
The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) method, which is well-suited for time-dependent problems involving complex boundary conditions. Incorporating the squirmer into LB is relatively straight-forward, but requires an unexpectedly fine grid resolution to capture the physical flow fields and behaviors accurately. We demonstrate this using four basic hydrodynamic tests: Two for the far-field flow---accuracy of the hydrodynamic moments and squirmer-squirmer interactions---and two that require the near field to be accurately resolved---a squirmer confined to a tube and one scattering off a spherical obstacle---which LB is capable of doing down to the grid resolution. We find good agreement with (numerical) results obtained using other hydrodynamic solvers in the same geometries and identify a minimum required resolution to achieve this reproduction. We discuss our algorithm in the context of other hydrodynamic solvers and present an outlook on its application to multi-squirmer problems.
In a shear flow particles migrate to their equilibrium positions in the microchannel. Here we demonstrate theoretically that if particles are inertial, this equilibrium can become unstable due to the Saffman lift force. We derive an expression for the critical Stokes number that determines the onset of instable equilibrium. We also present results of lattice Boltzmann simulations for spherical particles and prolate spheroids to validate the analysis. Our work provides a simple explanation of several unusual phenomena observed in earlier experiments and computer simulations, but never interpreted before in terms of the unstable equilibrium.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا