Do you want to publish a course? Click here

Dispersal-induced instability in complex ecosystems

104   0   0.0 ( 0 )
 Added by Tobias Galla
 Publication date 2020
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

In his seminal work in the 1970s Robert May suggested that there was an upper limit to the number of species that could be sustained in stable equilibrium by an ecosystem. This deduction was at odds with both intuition and the observed complexity of many natural ecosystems. The so-called stability-diversity debate ensued, and the discussion about the factors making an ecosystem stable or unstable continues to this day. We show in this work that dispersal can be a destabilising influence. To do this, we combine ideas from Alan Turings work on pattern formation with Mays random-matrix approach. We demonstrate how a stable equilibrium in a complex ecosystem with two trophic levels can become unstable with the introduction of dispersal in space. Conversely, we show that Turing instabilities can occur more easily in complex ecosystems with many species than in the case of only a few species. Our work shows that adding more details to the model of May gives rise to more ways in which an equilibrium can become unstable. Making Mays simple model more realistic is therefore unlikely to remove the upper bound on complexity.



rate research

Read More

125 - Stefano Allesina , Si Tang 2011
Forty years ago, Robert May questioned a central belief in ecology by proving that sufficiently large or complex ecological networks have probability of persisting close to zero. To prove this point, he analyzed large networks in which species interact at random. However, in natural systems pairs of species have well-defined interactions (e.g., predator-prey, mutualistic or competitive). Here we extend Mays results to these relationships and find remarkable differences between predator-prey interactions, which increase stability, and mutualistic and competitive, which are destabilizing. We provide analytic stability criteria for all cases. These results have broad applicability in ecology. For example, we show that, surprisingly, the probability of stability for predator-prey networks is decreased when we impose realistic food web structure or we introduce a large preponderance of weak interactions. Similarly, stability is negatively impacted by nestedness in bipartite mutualistic networks.
94 - Tobias Galla 2018
We use dynamical generating functionals to study the stability and size of communities evolving in Lotka-Volterra systems with random interaction coefficients. The size of the eco-system is not set from the beginning. Instead, we start from a set of possible species, which may undergo extinction. How many species survive depends on the properties of the interaction matrix; the size of the resulting food web at stationarity is a property of the system itself in our model, and not a control parameter as in most studies based on random matrix theory. We find that prey-predator relations enhance stability, and that variability of species interactions promotes instability. Complexity of inter-species couplings leads to reduced sizes of ecological communities. Dynamically evolved community size and stability are hence positively correlated.
301 - Guy Katriel 2021
Dispersal-induced growth (DIG) occurs when two populations with time-varying growth rates, each of which, when isolated, would become extinct, are able to persist and grow exponentially when dispersal among the two populations is present. This work provides a mathematical exploration of this surprising phenomenon, in the context of a deterministic model with periodic variation of growth rates, and characterizes the factors which are important in generating the DIG effect and the corresponding conditions on the parameters involved.
111 - D. Boyer , O. Lopez-Corona 2009
We introduce a model of traveling agents ({it e.g.} frugivorous animals) who feed on randomly located vegetation patches and disperse their seeds, thus modifying the spatial distribution of resources in the long term. It is assumed that the survival probability of a seed increases with the distance to the parent patch and decreases with the size of the colonized patch. In turn, the foraging agents use a deterministic strategy with memory, that makes them visit the largest possible patches accessible within minimal travelling distances. The combination of these interactions produce complex spatio-temporal patterns. If the patches have a small initial size, the vegetation total mass (biomass) increases with time and reaches a maximum corresponding to a self-organized critical state with power-law distributed patch sizes and Levy-like movement patterns for the foragers. However, this state collapses as the biomass sharply decreases to reach a noisy stationary regime characterized by corrections to scaling. In systems with low plant competition, the efficiency of the foraging rules leads to the formation of heterogeneous vegetation patterns with $1/f^{alpha}$ frequency spectra, and contributes, rather counter-intuitively, to lower the biomass levels.
107 - Jim Wu , Pankaj Mehta , 2021
Niche and neutral theory are two prevailing, yet much debated, ideas in ecology proposed to explain the patterns of biodiversity. Whereas niche theory emphasizes selective differences between species and interspecific interactions in shaping the community, neutral theory supposes functional equivalence between species and points to stochasticity as the primary driver of ecological dynamics. In this work, we draw a bridge between these two opposing theories. Starting from a Lotka-Volterra (LV) model with demographic noise and random symmetric interactions, we analytically derive the stationary population statistics and species abundance distribution (SAD). Using these results, we demonstrate that the model can exhibit three classes of SADs commonly found in niche and neutral theories and found conditions that allow an ecosystem to transition between these various regimes. Thus, we reconcile how neutral-like statistics may arise from a diverse community with niche differentiation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا