No Arabic abstract
Niche and neutral theory are two prevailing, yet much debated, ideas in ecology proposed to explain the patterns of biodiversity. Whereas niche theory emphasizes selective differences between species and interspecific interactions in shaping the community, neutral theory supposes functional equivalence between species and points to stochasticity as the primary driver of ecological dynamics. In this work, we draw a bridge between these two opposing theories. Starting from a Lotka-Volterra (LV) model with demographic noise and random symmetric interactions, we analytically derive the stationary population statistics and species abundance distribution (SAD). Using these results, we demonstrate that the model can exhibit three classes of SADs commonly found in niche and neutral theories and found conditions that allow an ecosystem to transition between these various regimes. Thus, we reconcile how neutral-like statistics may arise from a diverse community with niche differentiation.
The competitive exclusion principle asserts that coexisting species must occupy distinct ecological niches (i.e. the number of surviving species can not exceed the number of resources). An open question is to understand if and how different resource dynamics affect this bound. Here, we analyze a generalized consumer resource model with externally supplied resources and show that -- in contrast to self-renewing resources -- species can occupy only half of all available environmental niches. This motivates us to construct a new schema for classifying ecosystems based on species packing properties.
We present new theoretical and empirical results on the probability distributions of species persistence times in natural ecosystems. Persistence times, defined as the timespans occurring between species colonization and local extinction in a given geographic region, are empirically estimated from local observations of species presence/absence. A connected sampling problem is presented, generalized and solved analytically. Species persistence is shown to provide a direct connection with key spatial macroecological patterns like species-area and endemics-area relationships. Our empirical analysis pertains to two different ecosystems and taxa: a herbaceous plant community and a estuarine fish database. Despite the substantial differences in ecological interactions and spatial scales, we confirm earlier evidence on the general properties of the scaling of persistence times, including the predicted effects of the structure of the spatial interaction network. The framework tested here allows to investigate directly nature and extent of spatial effects in the context of ecosystem dynamics. The notable coherence between spatial and temporal macroecological patterns, theoretically derived and empirically verified, is suggested to underlie general features of the dynamic evolution of ecosystems.
In the companion paper of this set (Capitan and Cuesta, 2010) we have developed a full analytical treatment of the model of species assembly introduced in Capitan et al. (2009). This model is based on the construction of an assembly graph containing all viable configurations of the community, and the definition of a Markov chain whose transitions are the transformations of communities by new species invasions. In the present paper we provide an exhaustive numerical analysis of the model, describing the average time to the recurrent state, the statistics of avalanches, and the dependence of the results on the amount of available resource. Our results are based on the fact that the Markov chain provides an asymptotic probability distribution for the recurrent states, which can be used to obtain averages of observables as well as the time variation of these magnitudes during succession, in an exact manner. Since the absorption times into the recurrent set are found to be comparable to the size of the system, the end state is quickly reached (in units of the invasion time). Thus, the final ecosystem can be regarded as a fluctuating complex system where species are continually replaced by newcomers without ever leaving the set of recurrent patterns. The assembly graph is dominated by pathways in which most invasions are accepted, triggering small extinction avalanches. Through the assembly process, communities become less resilient (e.g., have a higher return time to equilibrium) but become more robust in terms of resistance against new invasions.
Recently we have introduced a simplified model of ecosystem assembly (Capitan et al., 2009) for which we are able to map out all assembly pathways generated by external invasions in an exact manner. In this paper we provide a deeper analysis of the model, obtaining analytical results and introducing some approximations which allow us to reconstruct the results of our previous work. In particular, we show that the population dynamics equations of a very general class of trophic-level structured food-web have an unique interior equilibrium point which is globally stable. We show analytically that communities found as end states of the assembly process are pyramidal and we find that the equilibrium abundance of any species at any trophic level is approximately inversely proportional to the number of species in that level. We also find that the per capita growth rate of a top predator invading a resident community is key to understand the appearance of complex end states reported in our previous work. The sign of these rates allows us to separate regions in the space of parameters where the end state is either a single community or a complex set containing more than one community. We have also built up analytical approximations to the time evolution of species abundances that allow us to determine, with high accuracy, the sequence of extinctions that an invasion may cause. Finally we apply this analysis to obtain the communities in the end states. To test the accuracy of the transition probability matrix generated by this analytical procedure for the end states, we have compared averages over those sets with those obtained from the graph derived by numerical integration of the Lotka-Volterra equations. The agreement is excellent.
Cyclic dominance is frequently believed to be a mechanism that maintains diversity of competing species. But this delicate balance could also be fragile if some of the members is weakened because an extinction of a species will involve the annihilation of its predator hence leaving only a single species alive. To check this expectation we here introduce a fourth species which chases exclusively a single member of the basic model composed by three cyclically dominant species. Interestingly, the coexistence is not necessarily broken and we have detected three consecutive phase transitions as we vary only the invasion strength of the fourth pestilent species. The resulting phases are analyzed by different techniques including the study of the Hamming distance density profiles. Some of our observations strengthen previous findings about cyclically dominant system, but they also offer new revelations and counter-intuitive phenomenon, like supporting pestilent species may result in its extinction, hence enriching our understanding about these very simple but still surprisingly complex systems.