No Arabic abstract
Dynamic flux balance analysis uses a quasi-steady state assumption to calculate an organisms metabolic activity at each time-step of a dynamic simulation, using the well-known technique of flux balance analysis. For microbial communities, this calculation is especially costly and involves solving a linear constrained optimization problem for each member of the community at each time step. However, this is unnecessary and inefficient, as prior solutions can be used to inform future time steps. Here, we show that a basis for the space of internal fluxes can be chosen for each microbe in a community and this basis can be used to simulate forward by solving a relatively inexpensive system of linear equations at most time steps. We can use this solution as long as the resulting metabolic activity remains within the optimization problems constraints (i.e. the solution to the linear system of equations remains a feasible to the linear program). As the solution becomes infeasible, it first becomes a feasible but degenerate solution to the optimization problem, and we can solve a different but related optimization problem to choose an appropriate basis to continue forward simulation. We demonstrate the efficiency and robustness of our method by comparing with currently used methods on a four species community, and show that our method requires at least $91%$ fewer optimizations to be solved. For reproducibility, we prototyped the method using Python. Source code is available at verb|https://github.com/jdbrunner/surfin_fba|.
Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing the dynamics of such models occasionally requires some techniques of model analysis. Choosing appropriate techniques of model analysis is often a difficult task. We define a prey (mouse) and predator (cat) model. The system is modelled by a pair of non-linear ordinary differential equations using mass action law, under constant rates. A proper scaling is suggested to minimize the number of parameters. More interestingly, we propose a homotopy technique with n expanding parame- ters for finding some analytical approximate solutions. Furthermore, using the local sensitivity method is another important step forward in this study because it helps to identify critical model parameters. Numerical simulations are provided using Matlab for different parameters and initial conditions.
Systems Biology is a fundamental field and paradigm that introduces a new era in Biology. The crux of its functionality and usefulness relies on metabolic networks that model the reactions occurring inside an organism and provide the means to understand the underlying mechanisms that govern biological systems. Even more, metabolic networks have a broader impact that ranges from resolution of ecosystems to personalized medicine.The analysis of metabolic networks is a computational geometry oriented field as one of the main operations they depend on is sampling uniformly points from polytopes; the latter provides a representation of the steady states of the metabolic networks. However, the polytopes that result from biological data are of very high dimension (to the order of thousands) and in most, if not all, the cases are considerably skinny. Therefore, to perform uniform random sampling efficiently in this setting, we need a novel algorithmic and computational framework specially tailored for the properties of metabolic networks.We present a complete software framework to handle sampling in metabolic networks. Its backbone is a Multiphase Monte Carlo Sampling (MMCS) algorithm that unifies rounding and sampling in one pass, obtaining both upon termination. It exploits an improved variant of the Billiard Walk that enjoys faster arithmetic complexity per step. We demonstrate the efficiency of our approach by performing extensive experiments on various metabolic networks. Notably, sampling on the most complicated human metabolic network accessible today, Recon3D, corresponding to a polytope of dimension 5 335 took less than 30 hours. To our knowledge, that is out of reach for existing software.
The detection and analysis of circulating tumor cells (CTCs) may enable a broad range of cancer-related applications, including the identification of acquired drug resistance during treatments. However, the non-scalable fabrication, prolonged sample processing times, and the lack of automation, associated with most of the technologies developed to isolate these rare cells, have impeded their transition into the clinical practice. This work describes a novel membrane-based microfiltration device comprised of a fully automated sample processing unit and a machine-vision-enabled imaging system that allows the efficient isolation and rapid analysis of CTCs from blood. The device performance was characterized using four prostate cancer cell lines, including PC-3, VCaP, DU-145, and LNCaP, obtaining high assay reproducibility and capture efficiencies greater than 93% after processing 7.5 mL blood samples from healthy donors, spiked with 100 cancer cells. Cancer cells remained viable after filtration due to the minimal shear stress exerted over cells during the procedure, while the identification of cancer cells by immunostaining was not affected by the number of non-specific events captured on the membrane. We were also able to identify the androgen receptor (AR) point mutation T878A from 7.5 mL blood samples spiked with 50 LNCaP cells using RT-PCR and Sanger sequencing. Finally, CTCs were detected in 8 of 8 samples from patients diagnosed with metastatic prostate cancer (mean $pm$ SEM = 21 $pm$ 2.957 CTCs/mL, median = 21 CTC/mL), thereby validating the potential clinical utility of the device.
A biological experiment is the most reliable way of assigning function to a protein. However, in the era of high-throughput sequencing, scientists are unable to carry out experiments to determine the function of every single gene product. Therefore, to gain insights into the activity of these molecules and guide experiments, we must rely on computational means to functionally annotate the majority of sequence data. To understand how well these algorithms perform, we have established a challenge involving a broad scientific community in which we evaluate different annotation methods according to their ability to predict the associations between previously unannotated protein sequences and Gene Ontology terms. Here we discuss the rationale, benefits and issues associated with evaluating computational methods in an ongoing community-wide challenge.
Microbiome-based stratification of healthy individuals into compositional categories, referred to as community types, holds promise for drastically improving personalized medicine. Despite this potential, the existence of community types and the degree of their distinctness have been highly debated. Here we adopted a dynamic systems approach and found that heterogeneity in the interspecific interactions or the presence of strongly interacting species is sufficient to explain community types, independent of the topology of the underlying ecological network. By controlling the presence or absence of these strongly interacting species we can steer the microbial ecosystem to any desired community type. This open-loop control strategy still holds even when the community types are not distinct but appear as dense regions within a continuous gradient. This finding can be used to develop viable therapeutic strategies for shifting the microbial composition to a healthy configuration