Do you want to publish a course? Click here

Two new methods for identifying proteins based on the domain protein complexes and topological properties

109   0   0.0 ( 0 )
 Added by Pengli Lu
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

The recognition of essential proteins not only can help to understand the mechanism of cell operation, but also help to study the mechanism of biological evolution. At present, many scholars have been discovering essential proteins according to the topological structure of protein network and complexes. While some proteins still can not be recognized. In this paper, we proposed two new methods complex degree centrality (CDC) and complex in-degree and betweenness definition (CIBD) which integrate the local character of protein complexes and topological properties to determine the essentiality of proteins. First, we give the definitions of complex average centrality (CAC) and complex hybrid centrality (CHC) which both describe the properties of protein complexes. Then we propose these new methods CDC and CIBD based on CAC and CHC definitions. In order to access these two methods, different Protein-Protein Interaction (PPI) networks of Saccharomyces cerevisiae, DIP, MIPS and YMBD are used as experimental materials. Experimental results in networks show that the methods of CDC and CIBD can help to improve the precision of predicting essential proteins.



rate research

Read More

Protein complexes conserved across species indicate processes that are core to cellular machinery (e.g. cell-cycle or DNA damage-repair complexes conserved across human and yeast). While numerous computational methods have been devised to identify complexes from the protein interaction (PPI) networks of individual species, these are severely limited by noise and errors (false positives) in currently available datasets. Our analysis using human and yeast PPI networks revealed that these methods missed several important complexes including those conserved between the two species (e.g. the MLH1-MSH2-PMS2-PCNA mismatch-repair complex). Here, we note that much of the functionalities of yeast complexes have been conserved in human complexes not only through sequence conservation of proteins but also of critical functional domains. Therefore, integrating information of domain conservation might throw further light on conservation patterns between yeast and human complexes.
65 - Pengli Lu , JingJuan Yu 2020
Essential protein plays a crucial role in the process of cell life. The identification of essential proteins can not only promote the development of drug target technology, but also contribute to the mechanism of biological evolution. There are plenty of scholars who pay attention to discovering essential proteins according to the topological structure of protein network and biological information. The accuracy of protein recognition still demands to be improved. In this paper, we propose a method which integrate the clustering coefficient in protein complexes and topological properties to determine the essentiality of proteins. First, we give the definition of In-clustering coefficient (IC) to describe the properties of protein complexes. Then we propose a new method, complex edge and node clustering coefficient (CENC) to identify essential proteins. Different Protein-Protein Interaction (PPI) networks of Saccharomyces cerevisiae, MIPS and DIP are used as experimental materials. Through some experiments of logistic regression model, the results show that the method of CENC can promote the ability of recognizing essential proteins, by comparing with the existing methods DC, BC, EC, SC, LAC, NC and the recent method UC.
Motivated by the critical need to identify new treatments for COVID-19, we present a genome-scale, systems-level computational approach to prioritize drug targets based on their potential to regulate host-virus interactions or their downstream signaling targets. We adapt and specialize network label propagation methods to this end. We demonstrate that these techniques can predict human-SARS-CoV-2 protein interactors with high accuracy. The top-ranked proteins that we identify are enriched in host biological processes that are potentially coopted by the virus. We present cases where our methodology generates promising insights such as the potential role of HSPA5 in viral entry. We highlight the connection between endoplasmic reticulum stress, HSPA5, and anti-clotting agents. We identify tubulin proteins involved in ciliary assembly that are targeted by anti-mitotic drugs. Drugs that we discuss are already undergoing clinical trials to test their efficacy against COVID-19. Our prioritized list of human proteins and drug targets is available as a general resource for biological and clinical researchers who are repositioning existing and approved drugs or developing novel therapeutics as anti-COVID-19 agents.
Gene expression is a noisy process and several mechanisms, both transcriptional and posttranscriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions.
Understanding the mathematical properties of graphs underling biological systems could give hints on the evolutionary mechanisms behind these structures. In this article we perform a complete statistical analysis over thousands of graphs representing metabolic and protein-protein interaction (PPI) networks. First, we investigate the quality of fits obtained for the nodes degree distributions to power-law functions. This analysis suggests that a power-law distribution poorly describes the data except for the far right tail in the case of PPI networks. Next we obtain descriptive statistics for the main graph parameters and try to identify the properties that deviate from the expected values had the networks been built by randomly linking nodes with the same degree distribution. This survey identifies the properties of biological networks which are not solely the result of their degree distribution, but emerge from yet unidentified mechanisms other than those that drive these distributions. The findings suggest that, while PPI networks have properties that differ from their expected values in their randomiz
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا