Do you want to publish a course? Click here

On the Collection of Fringe Subtrees in Random Binary Trees

151   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A fringe subtree of a rooted tree is a subtree consisting of one of the nodes and all its descendants. In this paper, we are specifically interested in the number of non-isomorphic trees that appear in the collection of all fringe subtrees of a binary tree. This number is analysed under two different random models: uniformly random binary trees and random binary search trees. In the case of uniformly random binary trees, we show that the number of non-isomorphic fringe subtrees lies between $c_1n/sqrt{ln n}(1+o(1))$ and $c_2n/sqrt{ln n}(1+o(1))$ for two constants $c_1 approx 1.0591261434$ and $c_2 approx 1.0761505454$, both in expectation and with high probability, where $n$ denotes the size (number of leaves) of the uniformly random binary tree. A similar result is proven for random binary search trees, but the order of magnitude is $n/ln n$ in this case. Our proof technique can also be used to strengthen known results on the number of distinct fringe subtrees (distinct in the sense of ordered trees). This quantity is of the same order of magnitude in both cases, but with slightly different constants in the upper and lower bounds.



rate research

Read More

A fringe subtree of a rooted tree is a subtree induced by one of the vertices and all its descendants. We consider the problem of estimating the number of distinct fringe subtrees in two types of random trees: simply generated trees and families of increasing trees (recursive trees, $d$-ary increasing trees and generalized plane-oriented recursive trees). We prove that the order of magnitude of the number of distinct fringe subtrees (under rather mild assumptions on what `distinct means) in random trees with $n$ vertices is $n/sqrt{log n}$ for simply generated trees and $n/log n$ for increasing trees.
196 - Akihiro Munemasa , Yoshio Sano , 2014
In this paper, we study the characteristic polynomials of the line graphs of generalized Bethe trees. We give an infinite family of such graphs sharing the same smallest eigenvalue. Our family generalizes the family of coronas of complete graphs discovered by Cvetkovic and Stevanovic.
For a connected graph, a {em minimum vertex separator} is a minimum set of vertices whose removal creates at least two connected components. The vertex connectivity of the graph refers to the size of the minimum vertex separator and a graph is $k$-vertex connected if its vertex connectivity is $k$, $kgeq 1$. Given a $k$-vertex connected graph $G$, the combinatorial problem {em vertex connectivity augmentation} asks for a minimum number of edges whose augmentation to $G$ makes the resulting graph $(k+1)$-vertex connected. In this paper, we initiate the study of $r$-vertex connectivity augmentation whose objective is to find a $(k+r)$-vertex connected graph by augmenting a minimum number of edges to a $k$-vertex connected graph, $r geq 1$. We shall investigate this question for the special case when $G$ is a tree and $r=2$. In particular, we present a polynomial-time algorithm to find a minimum set of edges whose augmentation to a tree makes it 3-vertex connected. Using lower bound arguments, we show that any tri-vertex connectivity augmentation of trees requires at least $lceil frac {2l_1+l_2}{2} rceil$ edges, where $l_1$ and $l_2$ denote the number of degree one vertices and degree two vertices, respectively. Further, we establish that our algorithm indeed augments this number, thus yielding an optimum algorithm.
Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. We first consider this problem for trees and prove that the minimum bisection width of every tree $T$ on $n$ vertices satisfies $MinBis(T) leq 8 n Delta(T) / diam(T)$. Second, we generalize this to arbitrary graphs with a given tree decomposition $(T,X)$ and give an upper bound on the minimum bisection width that depends on the structure of $(T,X)$. Moreover, we show that a bisection satisfying our general bound can be computed in time proportional to the encoding length of the tree decomposition when the latter is provided as input.
We introduce some natural families of distributions on rooted binary ranked plane trees with a view toward unifying ideas from various fields, including macroevolution, epidemiology, computational group theory, search algorithms and other fields. In the process we introduce the notions of split-exchangeability and plane-invariance of a general Markov splitting model in order to readily obtain probabilities over various equivalence classes of trees that arise in statistics, phylogenetics, epidemiology and group theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا