Do you want to publish a course? Click here

On the smallest eigenvalues of the line graphs of some trees

198   0   0.0 ( 0 )
 Added by Yoshio Sano Ph.D.
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

In this paper, we study the characteristic polynomials of the line graphs of generalized Bethe trees. We give an infinite family of such graphs sharing the same smallest eigenvalue. Our family generalizes the family of coronas of complete graphs discovered by Cvetkovic and Stevanovic.



rate research

Read More

336 - Nathan Reff 2015
A theory of orientation on gain graphs (voltage graphs) is developed to generalize the notion of orientation on graphs and signed graphs. Using this orientation scheme, the line graph of a gain graph is studied. For a particular family of gain graphs with complex units, matrix properties are established. As with graphs and signed graphs, there is a relationship between the incidence matrix of a complex unit gain graph and the adjacency matrix of the line graph.
126 - Akihiro Munemasa , Yoshio Sano , 2012
In this paper, we give a combinatorial characterization of the special graphs of fat Hoffman graphs containing $mathfrak{K}_{1,2}$ with smallest eigenvalue greater than -3, where $mathfrak{K}_{1,2}$ is the Hoffman graph having one slim vertex and two fat vertices.
A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is $(k-1)$-colorable. In this paper, we prove that for every fixed integer $kge 1$, there are only finitely many $k$-vertex-critical ($P_5$,gem)-free graphs and $(P_5,overline{P_3+P_2})$-free graphs. To prove the results we use a known structure theorem for ($P_5$,gem)-free graphs combined with properties of $k$-vertex-critical graphs. Moreover, we characterize all $k$-vertex-critical ($P_5$,gem)-free graphs and $(P_5,overline{P_3+P_2})$-free graphs for $k in {4,5}$ using a computer generation algorithm.
108 - Zhenan Shao , Xiying Yuan 2021
Let $G$ be a graph. For a subset $X$ of $V(G)$, the switching $sigma$ of $G$ is the signed graph $G^{sigma}$ obtained from $G$ by reversing the signs of all edges between $X$ and $V(G)setminus X$. Let $A(G^{sigma})$ be the adjacency matrix of $G^{sigma}$. An eigenvalue of $A(G^{sigma})$ is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. Let $S_{n,k}$ be the graph obtained from the complete graph $K_{n-r}$ by attaching $r$ pendent edges at some vertex of $K_{n-r}$. In this paper we prove that there exists a switching $sigma$ such that all eigenvalues of $G^{sigma}$ are main when $G$ is a complete multipartite graph, or $G$ is a harmonic tree, or $G$ is $S_{n,k}$. These results partly confirm a conjecture of Akbari et al.
In this paper, we show that all fat Hoffman graphs with smallest eigenvalue at least -1-tau, where tau is the golden ratio, can be described by a finite set of fat (-1-tau)-irreducible Hoffman graphs. In the terminology of Woo and Neumaier, we mean that every fat Hoffman graph with smallest eigenvalue at least -1-tau is an H-line graph, where H is the set of isomorphism classes of maximal fat (-1-tau)-irreducible Hoffman graphs. It turns out that there are 37 fat (-1-tau)-irreducible Hoffman graphs, up to isomorphism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا