No Arabic abstract
We introduce some natural families of distributions on rooted binary ranked plane trees with a view toward unifying ideas from various fields, including macroevolution, epidemiology, computational group theory, search algorithms and other fields. In the process we introduce the notions of split-exchangeability and plane-invariance of a general Markov splitting model in order to readily obtain probabilities over various equivalence classes of trees that arise in statistics, phylogenetics, epidemiology and group theory.
Measures of tree balance play an important role in various research areas, for example in phylogenetics. There they are for instance used to test whether an observed phylogenetic tree differs significantly from a tree generated by the Yule model of speciation. One of the most popular indices in this regard is the Colless index, which measures the degree of balance for rooted binary trees. While many statistical properties of the Colless index (e.g. asymptotic results for its mean and variance under different models of speciation) have already been discussed in different contexts, we focus on its extremal properties. While it is relatively straightforward to characterize trees with maximal Colless index, the analysis of the minimal value of the Colless index and the characterization of trees that achieve it, are much more involved. In this note, we therefore focus on the minimal value of the Colless index for any given number of leaves. We derive both a recursive formula for this minimal value, as well as an explicit expression, which shows a surprising connection between the Colless index and the so-called Blancmange curve, a fractal curve that is also known as the Takagi curve. Moreover, we characterize two classes of trees that have minimal Colless index, consisting of the set of so-called emph{maximally balanced trees} and a class of trees that we call emph{greedy from the bottom trees}. Furthermore, we derive an upper bound for the number of trees with minimal Colless index by relating these trees with trees with minimal Sackin index (another well-studied index of tree balance).
Let $T_{n}$ be the set of rooted labeled trees on $set{0,...,n}$. A maximal decreasing subtree of a rooted labeled tree is defined by the maximal subtree from the root with all edges being decreasing. In this paper, we study a new refinement $T_{n,k}$ of $T_n$, which is the set of rooted labeled trees whose maximal decreasing subtree has $k+1$ vertices.
The Perron value $rho(T)$ of a rooted tree $T$ has a central role in the study of the algebraic connectivity and characteristic set, and it can be considered a weight of spectral nature for $T$. A different, combinatorial weight notion for $T$ - the moment $mu(T)$ - emerges from the analysis of Kemenys constant in the context of random walks on graphs. In the present work, we compare these two weight concepts showing that $mu(T)$ is almost an upper bound for $rho(T)$ and the ratio $mu(T)/rho(T)$ is unbounded but at most linear in the order of $T$. To achieve these primary goals, we introduce two new objects associated with $T$ - the Perron entropy and the neckbottle matrix - and we investigate how different operations on the set of rooted trees affect the Perron value and the moment.
We exhibit a particular free subarrangement of a certain restriction of the Weyl arrangement of type $E_7$ and use it to give an affirmative answer to a recent conjecture by T.~Abe on the nature of additionally free and stair-free arrangements.
The modular decomposition of a symmetric map $deltacolon Xtimes X to Upsilon$ (or, equivalently, a set of symmetric binary relations, a 2-structure, or an edge-colored undirected graph) is a natural construction to capture key features of $delta$ in labeled trees. A map $delta$ is explained by a vertex-labeled rooted tree $(T,t)$ if the label $delta(x,y)$ coincides with the label of the last common ancestor of $x$ and $y$ in $T$, i.e., if $delta(x,y)=t(mathrm{lca}(x,y))$. Only maps whose modular decomposition does not contain prime nodes, i.e., the symbolic ultrametrics, can be exaplained in this manner. Here we consider rooted median graphs as a generalization to (modular decomposition) trees to explain symmetric maps. We first show that every symmetric map can be explained by extended hypercubes and half-grids. We then derive a a linear-time algorithm that stepwisely resolves prime vertices in the modular decomposition tree to obtain a rooted and labeled median graph that explains a given symmetric map $delta$. We argue that the resulting tree-like median graphs may be of use in phylogenetics as a model of evolutionary relationships.