No Arabic abstract
In this work, a neural network based terramechanics model and terrain estimator are presented with an outlook for optimal control applications such as model predictive control. Recognizing the limitations of the state-of-the-art terramechanics models in terms of operating conditions, computational cost, and continuous differentiability for gradient-based optimization, an efficient and twice continuously differentiable terramechanics model is developed using neural networks for dynamic operations on deformable terrains. It is demonstrated that the neural network terramechanics model is able to predict the lateral tire forces accurately and efficiently compared to the Soil Contact Model as a state-of-the-art model. Furthermore, the neural network terramechanics model is implemented within a terrain estimator and it is shown that using this model the estimator converges within around 2% of the true terrain parameter. Finally, with model predictive control applications in mind, which typically rely on bicycle models for their predictions, it is demonstrated that utilizing the estimated terrain parameter can reduce prediction errors of a bicycle model by orders of magnitude. The result is an efficient, dynamic, twice continuously differentiable terramechanics model and estimator that has inherent advantages for implementation in model predictive control as compared to previously established models.
The significant imbalance between power generation and load caused by severe disturbance may make the power system unable to maintain a steady frequency. If the post-disturbance dynamic frequency features can be predicted and emergency controls are appropriately taken, the risk of frequency instability will be greatly reduced. In this paper, a predictive algorithm for post-disturbance dynamic frequency features is proposed based on convolutional neural network (CNN) . The operation data before and immediately after disturbance is used to construct the input tensor data of CNN, with the dynamic frequency features of the power system after the disturbance as the output. The operation data of the power system such as generators unbalanced power has spatial distribution characteristics. The electrical distance is presented to describe the spatial correlation of power system nodes, and the t-SNE dimensionality reduction algorithm is used to map the high-dimensional distance information of nodes to the 2-D plane, thereby constructing the CNN input tensor to reflect spatial distribution of nodes operation data on 2-D plane. The CNN with deep network structure and local connectivity characteristics is adopted and the network parameters are trained by utilizing the backpropagation-gradient descent algorithm. The case study results on an improved IEEE 39-node system and an actual power grid in USA shows that the proposed method can predict the lowest frequency of power system after the disturbance accurately and quickly.
In this paper, a wide-area measurement system (WAMS)-based method is proposed to estimate the system state matrix for AC system with integrated voltage source converters (VSCs) and identify the electromechanical modes. The proposed method is purely model-free, requiring no knowledge of accurate network topology and system parameters. Numerical studies in the IEEE 68-bus system with integrated VSCs show that the proposed measurementbased method can accurately identify the electromechanical modes and estimate the damping ratios, the mode shapes, and the participation factors. The work may serve as a basis for developing WAMS-based damping control using VSCs in the future.
In this paper, we focus on the problem of blind joint calibration of multiband transceivers and time-delay (TD) estimation of multipath channels. We show that this problem can be formulated as a particular case of covariance matching. Although this problem is severely ill-posed, prior information about radio-frequency chain distortions and multipath channel sparsity is used for regularization. This approach leads to a biconvex optimization problem, which is formulated as a rank-constrained linear system and solved by a simple group Lasso algorithm.Numerical experiments show that the proposed algorithm provides better calibration and higher resolution for TD estimation than current state-of-the-art methods.
The robotic manipulation of composite rigid-deformable objects (i.e. those with mixed non-homogeneous stiffness properties) is a challenging problem with clear practical applications that, despite the recent progress in the field, it has not been sufficiently studied in the literature. To deal with this issue, in this paper we propose a new visual servoing method that has the capability to manipulate this broad class of objects (which varies from soft to rigid) with the same adaptive strategy. To quantify the objects infinite-dimensional configuration, our new approach computes a compact feedback vector of 2D contour moments features. A sliding mode control scheme is then designed to simultaneously ensure the finite-time convergence of both the feedback shape error and the model estimation error. The stability of the proposed framework (including the boundedness of all the signals) is rigorously proved with Lyapunov theory. Detailed simulations and experiments are presented to validate the effectiveness of the proposed approach. To the best of the authors knowledge, this is the first time that contour moments along with finite-time control have been used to solve this difficult manipulation problem.
We propose a neural network model for MDG and optical SNR estimation in SDM transmission. We show that the proposed neural-network-based solution estimates MDG and SNR with high accuracy and low complexity from features extracted after DSP.