Do you want to publish a course? Click here

A Closer Look at the Worst-case Behavior of Multi-armed Bandit Algorithms

76   0   0.0 ( 0 )
 Added by Anand Kalvit
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

One of the key drivers of complexity in the classical (stochastic) multi-armed bandit (MAB) problem is the difference between mean rewards in the top two arms, also known as the instance gap. The celebrated Upper Confidence Bound (UCB) policy is among the simplest optimism-based MAB algorithms that naturally adapts to this gap: for a horizon of play n, it achieves optimal O(log n) regret in instances with large gaps, and a near-optimal O(sqrt{n log n}) minimax regret when the gap can be arbitrarily small. This paper provides new results on the arm-sampling behavior of UCB, leading to several important insights. Among these, it is shown that arm-sampling rates under UCB are asymptotically deterministic, regardless of the problem complexity. This discovery facilitates new sharp asymptotics and a novel alternative proof for the O(sqrt{n log n}) minimax regret of UCB. Furthermore, the paper also provides the first complete process-level characterization of the MAB problem under UCB in the conventional diffusion scaling. Among other things, the small gap worst-case lens adopted in this paper also reveals profound distinctions between the behavior of UCB and Thompson Sampling, such as an incomplete learning phenomenon characteristic of the latter.



rate research

Read More

We study the structure of regret-minimizing policies in the many-armed Bayesian multi-armed bandit problem: in particular, with k the number of arms and T the time horizon, we consider the case where k > sqrt{T}. We first show that subsampling is a critical step for designing optimal policies. In particular, the standard UCB algorithm leads to sub-optimal regret bounds in this regime. However, a subsampled UCB (SS-UCB), which samples sqrt{T} arms and executes UCB only on that subset, is rate-optimal. Despite theoretically optimal regret, even SS-UCB performs poorly due to excessive exploration of suboptimal arms. In fact, in numerical experiments SS-UCB performs worse than a simple greedy algorithm (and its subsampled version) that pulls the current empirical best arm at every time period. We show that these insights hold even in a contextual setting, using real-world data. These empirical results suggest a novel form of free exploration in the many-armed regime that benefits greedy algorithms. We theoretically study this new source of free exploration and find that it is deeply connected to the distribution of a certain tail event for the prior distribution of arm rewards. This is a fundamentally distinct phenomenon from free exploration as discussed in the recent literature on contextual bandits, where free exploration arises due to variation in contexts. We prove that the subsampled greedy algorithm is rate-optimal for Bernoulli bandits when k > sqrt{T}, and achieves sublinear regret with more general distributions. This is a case where theoretical rate optimality does not tell the whole story: when complemented by the empirical observations of our paper, the power of greedy algorithms becomes quite evident. Taken together, from a practical standpoint, our results suggest that in applications it may be preferable to use a variant of the greedy algorithm in the many-armed regime.
In this paper we propose a multi-armed bandit inspired, pool based active learning algorithm for the problem of binary classification. By carefully constructing an analogy between active learning and multi-armed bandits, we utilize ideas such as lower confidence bounds, and self-concordant regularization from the multi-armed bandit literature to design our proposed algorithm. Our algorithm is a sequential algorithm, which in each round assigns a sampling distribution on the pool, samples one point from this distribution, and queries the oracle for the label of this sampled point. The design of this sampling distribution is also inspired by the analogy between active learning and multi-armed bandits. We show how to derive lower confidence bounds required by our algorithm. Experimental comparisons to previously proposed active learning algorithms show superior performance on some standard UCI datasets.
Restless Multi-Armed Bandits (RMABs) have been popularly used to model limited resource allocation problems. Recently, these have been employed for health monitoring and intervention planning problems. However, the existing approaches fail to account for the arrival of new patients and the departure of enrolled patients from a treatment program. To address this challenge, we formulate a streaming bandit (S-RMAB) framework, a generalization of RMABs where heterogeneous arms arrive and leave under possibly random streams. We propose a new and scalable approach to computing index-based solutions. We start by proving that index values decrease for short residual lifetimes, a phenomenon that we call index decay. We then provide algorithms designed to capture index decay without having to solve the costly finite horizon problem, thereby lowering the computational complexity compared to existing methods.We evaluate our approach via simulations run on real-world data obtained from a tuberculosis intervention planning task as well as multiple other synthetic domains. Our algorithms achieve an over 150x speed-up over existing methods in these tasks without loss in performance. These findings are robust across multiple domains.
128 - Tim Roughgarden 2020
One of the primary goals of the mathematical analysis of algorithms is to provide guidance about which algorithm is the best for solving a given computational problem. Worst-case analysis summarizes the performance profile of an algorithm by its worst performance on any input of a given size, implicitly advocating for the algorithm with the best-possible worst-case performance. Strong worst-case guarantees are the holy grail of algorithm design, providing an application-agnostic certification of an algorithms robustly good performance. However, for many fundamental problems and performance measures, such guarantees are impossible and a more nuanced analysis approach is called for. This chapter surveys several alternatives to worst-case analysis that are discussed in detail later in the book.
In this paper, we consider several finite-horizon Bayesian multi-armed bandit problems with side constraints which are computationally intractable (NP-Hard) and for which no optimal (or near optimal) algorithms are known to exist with sub-exponential running time. All of these problems violate the standard exchange property, which assumes that the reward from the play of an arm is not contingent upon when the arm is played. Not only are index policies suboptimal in these contexts, there has been little analysis of such policies in these problem settings. We show that if we consider near-optimal policies, in the sense of approximation algorithms, then there exists (near) index policies. Conceptually, if we can find policies that satisfy an approximate version of the exchange property, namely, that the reward from the play of an arm depends on when the arm is played to within a constant factor, then we have an avenue towards solving these problems. However such an approximate version of the idling bandit property does not hold on a per-play basis and are shown to hold in a global sense. Clearly, such a property is not necessarily true of arbitrary single arm policies and finding such single arm policies is nontrivial. We show that by restricting the state spaces of arms we can find single arm policies and that these single arm policies can be combined into global (near) index policies where the approximate version of the exchange property is true in expectation. The number of different bandit problems that can be addressed by this technique already demonstrate its wide applicability.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا