No Arabic abstract
Late-time cosmology in the extended cuscuton theory is studied, in which gravity is modified while one still has no extra dynamical degrees of freedom other than two tensor modes. We present a simple example admitting analytic solutions for the cosmological background evolution that mimics $Lambda$CDM cosmology. We argue that the extended cuscuton as dark energy can be constrained, like usual scalar-tensor theories, by the growth history of matter density perturbations and the time variation of Newtons constant.
We here study extended classes of logotropic fluids as textit{unified dark energy models}. Under the hypothesis of the Anton-Schmidt scenario, we consider the universe obeying a single fluid whose pressure evolves through a logarithmic equation of state. This result is in analogy with crystals under isotropic stresses. Thus, we investigate thermodynamic and dynamical consequences by integrating the speed of sound to obtain the pressure in terms of the density, leading to an extended version of the Anton-Schmidt cosmic fluids. Within this picture, we get significant outcomes expanding the Anton-Schmidt pressure in the infrared regime. The low-energy case becomes relevant for the universe to accelerate without any cosmological constant. We therefore derive the effective representation of our fluid in terms of a Lagrangian $mathcal{L}=mathcal{L}(X)$, depending on the kinetic term $X$ only. We analyze both the relativistic and non-relativistic limits. In the non-relativistic limit we construct both the Hamiltonian and Lagrangian in terms of density $rho$ and scalar field $vartheta$, whereas in the relativistic case no analytical expression for the Lagrangian can be found. Thus, we obtain the potential as a function of $rho$, under the hypothesis of irrotational perfect fluid. We demonstrate that the model represents a natural generalization of emph{logotropic dark energy models}. Finally, we analyze an extended class of generalized Chaplygin gas models with one extra parameter $beta$. Interestingly, we find that the Lagrangians of this scenario and the pure logotropic one coincide in the non-relativistic regime.
The metastable dark energy scenario is revisited by assuming that the current false vacuum energy density is the remnant from a primeval inflationary stage. The zero temperature scalar field potential is here described by an even power series up to order six which depends on 3 free parameters: the mass of the scalar field ($m$), the dimensionless ($lambda$) specifying the standard self-interaction term, and a free cutoff mass scale ($M$) quantifying all possible deviations from the degenerate false vacuum state. The current $Lambda$CDM model is a consequence of the very long decay time of the false vacuum which although finite is much greater than the current age of the Universe. This result remains valid for arbitrary combinations of the $m/M$ ratio which can analytically be determined in the thin-wall approximation and numerically calculated outside this limit. Unlike many claims in the literature the vacuum dominance may be temporary. The finiteness of the decay time suggests that the ultimate stage of the observed Universe in such a scenario will not be driven by a de Sitter type cosmology.
Under the assumption that a dynamical scalar field is responsible for the current acceleration of the Universe, we explore the possibility of probing its physics in black hole merger processes with gravitational wave interferometers. Remaining agnostic about the microscopic physics, we use an effective field theory approach to describe the scalar dynamics. We investigate the case in which some of the higher derivative operators, that are highly suppressed on cosmological scales, instead become important on typical distances for black holes. If a coupling to the Gauss-Bonnet operator is one of them, a non-trivial background profile for the scalar field can be sourced in the surroundings of the black hole, resulting in a potentially large amount of hair. In turn, this can induce sizeable modifications to the spacetime geometry or a mixing between the scalar and the gravitational perturbations. Both effects will ultimately translate into a modification of the quasi-normal mode spectrum in a way that is also sensitive to other operators besides the one sourcing the scalar background. The presence of deviations from the predictions of general relativity in the observed spectrum can therefore serve as a window onto dark energy physics.
Cosmological models with a dynamical dark energy field typically lead to a modified propagation of gravitational waves via an effectively time-varying gravitational coupling $G(t)$. The local variation of this coupling between the time of emission and detection can be probed with standard sirens. Here we discuss the role that Lunar Laser Ranging (LLR) and binary pulsar constraints play in the prospects of constraining $G(t)$ with standard sirens. In particular, we argue that LLR constrains the matter-matter gravitational coupling $G_N(t)$, whereas binary pulsars and standard sirens constrain the quadratic kinetic gravity self-interaction $G_{gw}(t)$. Generically, these two couplings could be different in alternative cosmological models, in which case LLR constraints are irrelevant for standard sirens. We use the Hulse-Taylor pulsar data and show that observations are highly insensitive to time variations of $G_{gw}(t)$ yet highly sensitive to $G_N(t)$. We thus conclude that future gravitational waves data will become the best probe to test $G_{gw}(t)$, and will hence provide novel constraints on dynamical dark energy models.
We study Kaluza-Klein cosmology in cuscuton gravity and find an exact solution describing an accelerating 4-dimensional universe with a stable extra dimension. A cuscuton which is a non-dynamical scalar field is responsible for the accelerating expansion and a vector field makes the extra dimensional space stable. Remarkably, the accelerating universe in our model is not exactly de Sitter.