No Arabic abstract
We here study extended classes of logotropic fluids as textit{unified dark energy models}. Under the hypothesis of the Anton-Schmidt scenario, we consider the universe obeying a single fluid whose pressure evolves through a logarithmic equation of state. This result is in analogy with crystals under isotropic stresses. Thus, we investigate thermodynamic and dynamical consequences by integrating the speed of sound to obtain the pressure in terms of the density, leading to an extended version of the Anton-Schmidt cosmic fluids. Within this picture, we get significant outcomes expanding the Anton-Schmidt pressure in the infrared regime. The low-energy case becomes relevant for the universe to accelerate without any cosmological constant. We therefore derive the effective representation of our fluid in terms of a Lagrangian $mathcal{L}=mathcal{L}(X)$, depending on the kinetic term $X$ only. We analyze both the relativistic and non-relativistic limits. In the non-relativistic limit we construct both the Hamiltonian and Lagrangian in terms of density $rho$ and scalar field $vartheta$, whereas in the relativistic case no analytical expression for the Lagrangian can be found. Thus, we obtain the potential as a function of $rho$, under the hypothesis of irrotational perfect fluid. We demonstrate that the model represents a natural generalization of emph{logotropic dark energy models}. Finally, we analyze an extended class of generalized Chaplygin gas models with one extra parameter $beta$. Interestingly, we find that the Lagrangians of this scenario and the pure logotropic one coincide in the non-relativistic regime.
Late-time cosmology in the extended cuscuton theory is studied, in which gravity is modified while one still has no extra dynamical degrees of freedom other than two tensor modes. We present a simple example admitting analytic solutions for the cosmological background evolution that mimics $Lambda$CDM cosmology. We argue that the extended cuscuton as dark energy can be constrained, like usual scalar-tensor theories, by the growth history of matter density perturbations and the time variation of Newtons constant.
The metastable dark energy scenario is revisited by assuming that the current false vacuum energy density is the remnant from a primeval inflationary stage. The zero temperature scalar field potential is here described by an even power series up to order six which depends on 3 free parameters: the mass of the scalar field ($m$), the dimensionless ($lambda$) specifying the standard self-interaction term, and a free cutoff mass scale ($M$) quantifying all possible deviations from the degenerate false vacuum state. The current $Lambda$CDM model is a consequence of the very long decay time of the false vacuum which although finite is much greater than the current age of the Universe. This result remains valid for arbitrary combinations of the $m/M$ ratio which can analytically be determined in the thin-wall approximation and numerically calculated outside this limit. Unlike many claims in the literature the vacuum dominance may be temporary. The finiteness of the decay time suggests that the ultimate stage of the observed Universe in such a scenario will not be driven by a de Sitter type cosmology.
Phenomenological implications of the Mimetic Tensor-Vector-Scalar theory (MiTeVeS) are studied. The theory is an extension of the vector field model of mimetic dark matter, where a scalar field is also incorporated, and it is known to be free from ghost instability. In the absence of interactions between the scalar field and the vector field, the obtained cosmological solution corresponds to the General theory of Relativity (GR) with a minimally-coupled scalar field. However, including an interaction term between the scalar field and the vector field yields interesting dynamics. There is a shift symmetry for the scalar field with a flat potential, and the conserved Noether current, which is associated with the symmetry, behaves as a dark matter component. Consequently, the solution contains a cosmological constant, dark matter and a stiff matter fluid. Breaking the shift symmetry with a non-flat potential gives a natural interaction between dark energy and dark matter.
We describe a new class of dark energy (DE) models which behave like cosmological trackers at early times. These models are based on the $alpha$-attractor set of potentials, originally discussed in the context of inflation. The new models allow the current acceleration of the universe to be reached from a wide class of initial conditions. Prominent examples of this class of models are the potentials $cothvarphi$ and $coshvarphi$. A remarkable feature of this new class of models is that they lead to large enough negative values of the equation of state at the present epoch, consistent with the observations of accelerated expansion of the universe, from a very large initial basin of attraction. They therefore avoid the fine tuning problem which afflicts many models of DE.
$Om(z)$ is a diagnostic approach to distinguish dark energy models. However, there are few articles to discuss what is the distinguishing criterion. In this paper, firstly we smooth the latest observational $H(z)$ data using a model-independent method -- Gaussian processes, and then reconstruct the $Om(z)$ and its fist order derivative $mathcal{L}^{(1)}_m$. Such reconstructions not only could be the distinguishing criteria, but also could be used to estimate the authenticity of models. We choose some popular models to study, such as $Lambda$CDM, generalized Chaplygin gas (GCG) model, Chevallier-Polarski-Linder (CPL) parametrization and Jassal-Bagla-Padmanabhan (JBP) parametrization. We plot the trajectories of $Om(z)$ and $mathcal{L}^{(1)}_m$ with $1 sigma$ confidence level of these models, and compare them to the reconstruction from $H(z)$ data set. The result indicates that the $H(z)$ data does not favor the CPL and JBP models at $1 sigma$ confidence level. Strangely, in high redshift range, the reconstructed $mathcal{L}^{(1)}_m$ has a tendency of deviation from theoretical value, which demonstrates these models are disagreeable with high redshift $H(z)$ data. This result supports the conclusions of Sahni et al. citep{sahni2014model} and Ding et al. citep{ding2015there} that the $Lambda$CDM may not be the best description of our universe.