Do you want to publish a course? Click here

Anisotropic Nonequilibrium Lattice Dynamics of Black Phosphorus

82   0   0.0 ( 0 )
 Added by Daniela Zahn
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Black phosphorus has recently attracted significant attention for its highly anisotropic properties. A variety of ultrafast optical spectroscopies has been applied to probe the carrier response to photoexcitation, but the complementary lattice response has remained unaddressed. Here we employ femtosecond electron diffraction to explore how the structural anisotropy impacts the lattice dynamics after photoexcitation. We observe two timescales in the lattice response, which we attribute to electron-phonon and phonon-phonon thermalization. Pronounced differences between armchair and zigzag directions are observed, indicating a nonthermal state of the lattice lasting up to ~60 ps. This nonthermal state is characterized by a modified anisotropy of the atomic vibrations compared to equilibrium. Our findings provide insights in both electron-phonon as well as phonon-phonon coupling and bear direct relevance for any application of black phosphorus in nonequilibrium conditions.

rate research

Read More

To date, the intrinsic thermal conductivity tensor of bulk black phosphorus (BP), an important 2D material, is still unknown, since recent studies focus on BP flakes not on bulk BP. Here we report the anisotropic thermal conductivity tensor of bulk BP, for temperature range 80 - 300 K. Our measurements are similar to prior measurements on submicron BP flakes along zigzag and armchair axes, but are >25% higher in the through-plane axis, suggesting that phonon mean-free-paths are substantially longer in the through-plane direction. We find that despite the anisotropy in thermal conductivity, phonons are predominantly scattered by the same Umklapp processes in all directions. We also find that the phonon relaxation time is rather isotropic in the basal planes, but is highly anisotropic in the through-plane direction. Our work advances fundamental knowledge of anisotropic scattering of phonons in BP and is an important benchmark for future studies on thermal properties of BP nanostructures.
69 - Fabio Caruso 2021
The coupled nonequilibrium dynamics of electrons and phonons in monolayer MoS2 is investigated by combining first-principles calculations of the electron-phonon and phonon-phonon interaction with the time-dependent Boltzmann equation. Strict phase-space constraints in the electron-phonon scattering are found to influence profoundly the decay path of excited electrons and holes, restricting the emission of phonons to crystal momenta close to few high-symmetry points in the Brillouin zone. As a result of momentum selectivity in the phonon emission, the nonequilibrium lattice dynamics is characterized by the emergence of a highly-anisotropic population of phonons in reciprocal space, which persists for up to 10 ps until thermal equilibrium is restored by phonon-phonon scattering. Achieving control of the nonequilibrium dynamics of the lattice may provide unexplored opportunities to selectively enhance the phonon population of two-dimensional crystals and, thereby, transiently tailor electron-phonon interactions over sub-picosecond time scales.
Black phosphorus has recently emerged as a promising material for high performance electronic and optoelectronic device for its high mobility, tunable mid-infrared bandgap and anisotropic electronic properties. Dynamical evolution of photo excited carriers and its induced change of transient electronic properties are critical for materials high field performance, but remains to be explored for black phosphorus. In this work, we perform angle resolved transient reflection spectroscopy to study the dynamical evolution of anisotropic properties of black phosphorus under photo excitation. We find that the anisotropy of reflectivity is enhanced in the pump induced quasi-equilibrium state, suggesting an extraordinary enhancement of the anisotropy in dynamical conductivity in hot carrier dominated regime. These results raise enormous possibilities of creating high field, angle sensitive electronic, optoelectronic and remote sensing devices exploiting the dynamical electronic anisotropic with black phosphorus.
Black phosphorus (BP) has emerged as a promising candidate for next generation electronics and optoelectronics among the 2D family materials due to its extraordinary electrical/optical/optoelectronic properties. Interestingly, BP shows strong anisotropic transport behaviour because of its puckered honeycomb structure. Previous studies have demonstrated the thermal transport anisotropy of BP and theoretically attribute this to the anisotropy in both phonon dispersion relation and phonon relaxation time. However, the exact origin of such strong anisotropy lacks clarity and has yet to be proven experimentally. In this work, we probe the thermal transport anisotropy of BP nanoribbons (NRs) by an electron beam technique. We provide direct evidence that the origin of this anisotropy is dominated by the anisotropic phonon group velocity for the first time, verified by Young modulus measurements along different directions. It turns out that the ratio of thermal conductivity between zigzag (ZZ) and armchair (AC) ribbons is almost same as that of the corresponding Young modulus values. The results from first-principles calculation are consistent with this experimental observation, where anisotropic phonon group velocity between ZZ and AC is shown. Our results provide fundamental insight into the anisotropic thermal transport in low symmetric crystals.
The puckered surface of black phosphorus represents an ideal substrate for an unconventional arrangement of physisorbed species and the resulting specific two-dimensional chemistry of this system. This opens the way to investigate the chemical and physical properties of locally confined areas of black phosphorus without the necessity for further physical downscaling of the material. We have evaporated TCNQ on top of black phosphorus under over-saturation non-equilibrium conditions in vacuum. The evolution of linear density and height of droplets formed through oxidation during exposure to air was studied time-dependently by scanning-force microscopy. Our study suggests that the TCNQ molecules spontaneously arrange in a thin layer of the order of a few nm height, which, however, is fragmented with a periodicity of about 100 nm. It is shown that within the confined space separating the layer fragments the chemical dynamics of the oxidation process is remarkably different than on a bare black phosphorus surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا