Do you want to publish a course? Click here

Effect of TCNQ layer cover on oxidation dynamics of black phosphorus

129   0   0.0 ( 0 )
 Added by Andreas Hirsch
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The puckered surface of black phosphorus represents an ideal substrate for an unconventional arrangement of physisorbed species and the resulting specific two-dimensional chemistry of this system. This opens the way to investigate the chemical and physical properties of locally confined areas of black phosphorus without the necessity for further physical downscaling of the material. We have evaporated TCNQ on top of black phosphorus under over-saturation non-equilibrium conditions in vacuum. The evolution of linear density and height of droplets formed through oxidation during exposure to air was studied time-dependently by scanning-force microscopy. Our study suggests that the TCNQ molecules spontaneously arrange in a thin layer of the order of a few nm height, which, however, is fragmented with a periodicity of about 100 nm. It is shown that within the confined space separating the layer fragments the chemical dynamics of the oxidation process is remarkably different than on a bare black phosphorus surface.



rate research

Read More

Phosphorus atomic chains, the utmost-narrow nanostructures of black phosphorus (BP), are highly relevant to the in-depth development of BP into one-dimensional (1D) regime. In this contribution, we report a top-down route to prepare atomic chains of BP via electron beam sculpting inside a transmission electron microscope (TEM). The growth and dynamics (i.e. rupture and edge migration) of 1D phosphorus chains are experimentally captured for the first time. Furthermore, the dynamic behaviors and associated energetics of the as-formed phosphorus chains are further corroborated by density functional theory (DFT) calculations. The 1D counterpart of BP will serve as a novel platform and inspire further exploration of the versatile properties of BP.
An outstanding challenge of theoretical electronic structure is the description of van der Waals (vdW) interactions in molecules and solids. Renewed interest in resolving this is in part motivated by the technological promise of layered systems including graphite, transition metal dichalcogenides, and more recently, black phosphorus, in which the interlayer interaction is widely believed to be dominated by these types of forces. We report a series of quantum Monte Carlo (QMC) calculations for bulk black phosphorus and related few-layer phosphorene, which elucidate the nature of the forces that bind these systems and provide benchmark data for the energetics of these systems. We find a significant charge redistribution due to the interaction between electrons on adjacent layers. Comparison to density functional theory (DFT) calculations indicate not only wide variability even among different vdW corrected functionals, but the failure of these functionals to capture the trend of reorganization predicted by QMC. The delicate interplay of steric and dispersive forces between layers indicate that few-layer phosphorene presents an unexpected challenge for the development of vdW corrected DFT.
Black phosphorus has recently attracted significant attention for its highly anisotropic properties. A variety of ultrafast optical spectroscopies has been applied to probe the carrier response to photoexcitation, but the complementary lattice response has remained unaddressed. Here we employ femtosecond electron diffraction to explore how the structural anisotropy impacts the lattice dynamics after photoexcitation. We observe two timescales in the lattice response, which we attribute to electron-phonon and phonon-phonon thermalization. Pronounced differences between armchair and zigzag directions are observed, indicating a nonthermal state of the lattice lasting up to ~60 ps. This nonthermal state is characterized by a modified anisotropy of the atomic vibrations compared to equilibrium. Our findings provide insights in both electron-phonon as well as phonon-phonon coupling and bear direct relevance for any application of black phosphorus in nonequilibrium conditions.
Black Phosphorus (bP) has emerged as an interesting addition to the category of two-dimensional materials. Surface-science studies on this material are of great interest, but they are hampered by bPs high reactivity to oxygen and water, a major challenge to scanning tunneling microscopy (STM) experiments. As a consequence, the large majority of these studies were performed by cleaving a bulk crystal in situ. Here we present a study of surface modifications on exfoliated bP flakes upon consecutive annealing steps, up to 550 C, well above the sublimation temperature of bP. In particular, our attention is focused on the temperature range 375 C - 400 C, when sublimation starts, and a controlled desorption from the surface occurs alongside with the formation of characteristic well-aligned craters. There is an open debate in the literature about the crystallographic orientation of these craters, whether they align along the zigzag or the armchair direction. Thanks to the atomic resolution provided by STM, we are able to identify the orientation of the craters with respect to the bP crystal: the long axis of the craters is aligned along the zigzag direction of bP. This allows us to solve the controversy, and, moreover, to provide insight in the underlying desorption mechanism leading to crater formation.
The structural and elastic properties of orthorhombic black phosphorus have been investigated using first-principles calculations based on density functional theory. The structural parameters have been calculated using the local density approximation (LDA), the generalized gradient approximation (GGA), and with several dispersion corrections to include van der Waals interactions. It is found that the dispersion corrections improve the lattice parameters over LDA and GGA in comparison with experimental results. The calculations reproduce well the experimental trends under pressure and show that van der Waals interactions are most important for the crystallographic b-axis, in the sense that they have the largest effect on the bonding between the phosphorus layers. The elastic constants are calculated and are found to be in good agreement with experimental values. The calculated C$_{22}$ elastic constant is significantly larger than the C$_{11}$ and C$_{33}$ parameters, implying that black phosphorus is stiffer against strain along the a-axis than along the b- and c-axes. From the calculated elastic constants,the mechanical properties such as bulk modulus, shear modulus, Youngs modulus and Poissons ratio are obtained. The calculated Raman active optical phonon frequencies and their pressure variations are in excellent agreement with available experimental results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا