Do you want to publish a course? Click here

Temperature dependence of anisotropic thermal conductivity tensor of bulk black phosphorus

67   0   0.0 ( 0 )
 Added by Bo Sun
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

To date, the intrinsic thermal conductivity tensor of bulk black phosphorus (BP), an important 2D material, is still unknown, since recent studies focus on BP flakes not on bulk BP. Here we report the anisotropic thermal conductivity tensor of bulk BP, for temperature range 80 - 300 K. Our measurements are similar to prior measurements on submicron BP flakes along zigzag and armchair axes, but are >25% higher in the through-plane axis, suggesting that phonon mean-free-paths are substantially longer in the through-plane direction. We find that despite the anisotropy in thermal conductivity, phonons are predominantly scattered by the same Umklapp processes in all directions. We also find that the phonon relaxation time is rather isotropic in the basal planes, but is highly anisotropic in the through-plane direction. Our work advances fundamental knowledge of anisotropic scattering of phonons in BP and is an important benchmark for future studies on thermal properties of BP nanostructures.



rate research

Read More

Black phosphorus (BP) has emerged as a direct-bandgap semiconducting material with great application potentials in electronics, photonics, and energy conversion. Experimental characterization of the anisotropic thermal properties of BP, however, is extremely challenging due to the lack of reliable and accurate measurement techniques to characterize anisotropic samples that are micrometers in size. Here, we report measurement results of the anisotropic thermal conductivity of bulk BP along three primary crystalline orientations, using the novel time-resolved magneto-optical Kerr effect (TR-MOKE) with enhanced measurement sensitivities. Two-dimensional beam-offset TR-MOKE signals from BP flakes yield the thermal conductivity along the zigzag crystalline direction to be 84 ~ 101 W/(m*K), nearly three times as large as that along the armchair direction (26 ~ 36 W/(m*K)). The through-plane thermal conductivity of BP ranges from 4.3 to 5.5 W/(m*K). The first-principles calculation was performed for the first time to predict the phonon transport in BP both along the in-plane zigzag and armchair directions and along the through-plane direction. This work successfully unveiled the fundamental mechanisms of anisotropic thermal transport along the three crystalline directions in bulk BP, as demonstrated by the excellent agreement between our first-principles-based theoretical predictions and experimental characterizations on the anisotropic thermal conductivities of bulk BP.
Black phosphorus (BP) has emerged as a promising candidate for next generation electronics and optoelectronics among the 2D family materials due to its extraordinary electrical/optical/optoelectronic properties. Interestingly, BP shows strong anisotropic transport behaviour because of its puckered honeycomb structure. Previous studies have demonstrated the thermal transport anisotropy of BP and theoretically attribute this to the anisotropy in both phonon dispersion relation and phonon relaxation time. However, the exact origin of such strong anisotropy lacks clarity and has yet to be proven experimentally. In this work, we probe the thermal transport anisotropy of BP nanoribbons (NRs) by an electron beam technique. We provide direct evidence that the origin of this anisotropy is dominated by the anisotropic phonon group velocity for the first time, verified by Young modulus measurements along different directions. It turns out that the ratio of thermal conductivity between zigzag (ZZ) and armchair (AC) ribbons is almost same as that of the corresponding Young modulus values. The results from first-principles calculation are consistent with this experimental observation, where anisotropic phonon group velocity between ZZ and AC is shown. Our results provide fundamental insight into the anisotropic thermal transport in low symmetric crystals.
Black phosphorus has recently attracted significant attention for its highly anisotropic properties. A variety of ultrafast optical spectroscopies has been applied to probe the carrier response to photoexcitation, but the complementary lattice response has remained unaddressed. Here we employ femtosecond electron diffraction to explore how the structural anisotropy impacts the lattice dynamics after photoexcitation. We observe two timescales in the lattice response, which we attribute to electron-phonon and phonon-phonon thermalization. Pronounced differences between armchair and zigzag directions are observed, indicating a nonthermal state of the lattice lasting up to ~60 ps. This nonthermal state is characterized by a modified anisotropy of the atomic vibrations compared to equilibrium. Our findings provide insights in both electron-phonon as well as phonon-phonon coupling and bear direct relevance for any application of black phosphorus in nonequilibrium conditions.
380 - Zhao Wang , N. Mingo 2011
We theoretically compute the thermal conductivity of SiGe alloy nanowires as a function of nanowire diameter, alloy concentration, and temperature, obtaining a satisfactory quantitative agreement with experimental results. Our results account for the weaker diameter dependence of the thermal conductivity recently observed in Si$_{1-x}$Ge$_x$ nanowires ($x<0.1$), as compared to pure Si nanowires. We also present calculations in the full range of alloy concentrations, $0 leq x leq 1$, which may serve as a basis for comparison with future experiments on high alloy concentration nanowires.
349 - Jie Guan , Wenshen Song , Li Yang 2016
We study theoretically the structural and electronic response of layered bulk black phosphorus to in-layer strain. Ab initio density functional theory (DFT) calculations reveal that the strain energy and interlayer spacing display a strong anisotropy with respect to the uniaxial strain direction. To correctly describe the dependence of the fundamental band gap on strain, we used the computationally more involved GW quasiparticle approach that is free of parameters and superior to DFT studies, which are known to underestimate gap energies. We find that the band gap depends sensitively on the in-layer strain and even vanishes at compressive strain values exceeding about 2%, thus suggesting a possible application of black P in strain-controlled infrared devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا